Leveraging GWAS data to identify metabolic pathways and networks involved in maize lipid biosynthesis

全基因组关联研究 单核苷酸多态性 生物 代谢途径 脂质代谢 鞘脂 生物途径 数量性状位点 遗传关联 遗传学 基因 生物化学 基因型 基因表达
作者
Hui Li,Adam Thrash,Juliet D. Tang,Linlin He,Jianbing Yan,Marilyn L. Warburton
出处
期刊:Plant Journal [Wiley]
卷期号:98 (5): 853-863 被引量:38
标识
DOI:10.1111/tpj.14282
摘要

Summary Maize ( Zea mays mays ) oil is a rich source of polyunsaturated fatty acids ( FA s) and energy, making it a valuable resource for human food, animal feed, and bio‐energy. Although this trait has been studied via conventional genome‐wide association study ( GWAS ), the single nucleotide polymorphism ( SNP )‐trait associations generated by GWAS may miss the underlying associations when traits are based on many genes, each with small effects that can be overshadowed by genetic background and environmental variation. Detecting these SNP s statistically is also limited by the levels set for false discovery rate. A complementary pathways analysis that emphasizes the cumulative aspects of SNP ‐trait associations, rather than just the significance of single SNP s, was performed to understand the balance of lipid metabolism, conversion, and catabolism in this study. This pathway analysis indicated that acyl‐lipid pathways, including biosynthesis of wax esters, sphingolipids, phospholipids and flavonoids, along with FA and triacylglycerol ( TAG ) biosynthesis, were important for increasing oil and FA content. The allelic variation found among the genes involved in many degradation pathways, and many biosynthesis pathways leading from FA s and carbon partitioning pathways, was critical for determining final FA content, changing FA ratios and, ultimately, to final oil content. The pathways and pathway networks identified in this study, and especially the acyl‐lipid associated pathways identified beyond what had been found with GWAS alone, provide a real opportunity to precisely and efficiently manipulate high‐oil maize genetic improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李健的粉丝团团长应助lzx采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得30
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
dong应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
dong应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得20
3秒前
ding应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
思源应助luo采纳,获得10
3秒前
田格本发布了新的文献求助10
4秒前
4秒前
good完成签到 ,获得积分10
5秒前
并肩于雪山之巅完成签到 ,获得积分10
6秒前
平常的小蝴蝶完成签到,获得积分10
6秒前
7秒前
hhhi发布了新的文献求助20
7秒前
7秒前
猪猪仔完成签到,获得积分10
8秒前
朝文奕完成签到,获得积分10
9秒前
lll发布了新的文献求助10
10秒前
李爱国应助爱吃肉的猪采纳,获得10
11秒前
11秒前
feng_qi001发布了新的文献求助10
12秒前
成瑶发布了新的文献求助10
13秒前
14秒前
14秒前
16秒前
都选C发布了新的文献求助10
16秒前
17秒前
必中发布了新的文献求助10
17秒前
19秒前
20秒前
SciGPT应助feng_qi001采纳,获得10
20秒前
香蕉觅云应助Rambo采纳,获得10
20秒前
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Composite Predicates in English 300
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3984825
求助须知:如何正确求助?哪些是违规求助? 3528013
关于积分的说明 11238787
捐赠科研通 3266324
什么是DOI,文献DOI怎么找? 1803305
邀请新用户注册赠送积分活动 880872
科研通“疑难数据库(出版商)”最低求助积分说明 808411