亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Nondestructive identification of green tea varieties based on hyperspectral imaging technology

高光谱成像 支持向量机 模式识别(心理学) 数学 特征选择 预处理器 人工智能 计算机科学
作者
Jun Sun,Kai Tang,Xiaohong Wu,Chunxia Dai,Yong Chen,Jifeng Shen
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:41 (5) 被引量:23
标识
DOI:10.1111/jfpe.12800
摘要

Abstract A new method for rapid detection of green tea varieties by hyperspectral imaging technology was proposed in this article. In this experiment, five different varieties of green tea were taken as the research object, and the hyperspectral images of five different varieties of green tea were collected. In order to reduce the impact of noise and spectral scattering, the spectral data were preprocessed using Savitzky–Golay (SG) and multiple scattering correction (MSC) preprocessing. Then iteratively retaining informative variables (IRIV) and variable iterative space shrinkage approach (VISSA) variable selection method were used to make variable selection on the pre‐processed spectral data to select the best variable combination. Since the randomness of support vector machine (SVM) parameters has a certain influence on the model, the firefly algorithm (FA) was used to optimize the parameters of SVM. Finally, the SVM green tea varieties identification models were established based on the total spectral data and the spectral data selected by variables selection, and the different modeling results were compared and analyzed. The results show that the VISSA‐FA‐SVM model has the best identification effect, and the classification accuracies of the calibration set and the prediction set are 100 and 96%, respectively. Practical applications The practical application of this article is to identify the different varieties of green tea by using hyperspectral imaging technology. Compared with traditional methods, hyperspectral imaging technology can be used to identify different varieties of green tea quickly, nondestructive and accurately. Optimizing the parameters of the model in appropriate can improve the performance of the model. In this article, firefly algorithm was used to optimize SVM parameters to get the optimal parameters for modeling. In addition, the selection of preferred variables by variables selection can provide a theoretical basis for the identification of portable green tea varieties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助lzy采纳,获得10
6秒前
18秒前
lzy发布了新的文献求助10
25秒前
ZJakariae应助科研通管家采纳,获得20
40秒前
科研通AI5应助lzy采纳,获得10
46秒前
Owen应助田朝阳采纳,获得10
1分钟前
努力羊羊应助爱听歌笑寒采纳,获得10
1分钟前
优秀的流沙完成签到 ,获得积分10
1分钟前
chenjzhuc应助爱听歌笑寒采纳,获得10
1分钟前
2分钟前
车访枫发布了新的文献求助10
2分钟前
2分钟前
车访枫完成签到,获得积分10
2分钟前
挖菜发布了新的文献求助10
3分钟前
rosa完成签到,获得积分20
3分钟前
3分钟前
rosa发布了新的文献求助10
3分钟前
体贴问丝完成签到 ,获得积分10
4分钟前
酷波er应助满意的谷梦采纳,获得30
4分钟前
鲤鱼越越完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
6分钟前
6分钟前
7分钟前
Micarl发布了新的文献求助10
7分钟前
科研佟完成签到 ,获得积分10
7分钟前
Micarl完成签到,获得积分20
7分钟前
8分钟前
puzhongjiMiQ发布了新的文献求助10
8分钟前
puzhongjiMiQ发布了新的文献求助10
9分钟前
淡淡醉波wuliao完成签到 ,获得积分10
9分钟前
10分钟前
10分钟前
10分钟前
11分钟前
拓跋涵易完成签到,获得积分10
12分钟前
香蕉觅云应助科研通管家采纳,获得10
12分钟前
科研通AI5应助Marciu33采纳,获得10
12分钟前
Ava应助整齐道消采纳,获得10
12分钟前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819930
求助须知:如何正确求助?哪些是违规求助? 3362797
关于积分的说明 10418814
捐赠科研通 3081174
什么是DOI,文献DOI怎么找? 1694991
邀请新用户注册赠送积分活动 814788
科研通“疑难数据库(出版商)”最低求助积分说明 768522