Fault Diagnosis of a Helical Gearbox Based on an Adaptive Empirical Wavelet Transform in Combination with a Spectral Subtraction Method

噪音(视频) 断层(地质) 小波 信号(编程语言) 小波变换 滤波器(信号处理) 计算机科学 模式识别(心理学) 人工智能 降噪 特征(语言学) 特征提取 频带 工程类 电子工程 计算机视觉 电信 带宽(计算) 地震学 哲学 地质学 程序设计语言 图像(数学) 语言学
作者
Peng Wang,Chang-Myung Lee
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:9 (8): 1696-1696 被引量:13
标识
DOI:10.3390/app9081696
摘要

Fault characteristic extraction is attracting a great deal of attention from researchers for the fault diagnosis of rotating machinery. Generally, when a gearbox is damaged, accurate identification of the side-band features can be used to detect the condition of the machinery equipment to reduce financial losses. However, the side-band feature of damaged gears that are constantly disturbed by strong jamming is embedded in the background noise. In this paper, a hybrid signal-processing method is proposed based on a spectral subtraction (SS) denoising algorithm combined with an empirical wavelet transform (EWT) to extract the side-band feature of gear faults. Firstly, SS is used to estimate the real-time noise information, which is used to enhance the fault signal of the helical gearbox from a vibration signal with strong noise disturbance. The empirical wavelet transform can extract amplitude-modulated/frequency-modulated (AM-FM) components of a signal using different filter bands that are designed in accordance with the signal properties. The fault signal is obtained by building a flexible gear for a helical gearbox with ADAMS software. The experiment shows the feasibility and availability of the multi-body dynamics model. The spectral subtraction-based adaptive empirical wavelet transform (SS-AEWT) method was applied to estimate the gear side-band feature for different tooth breakages and the strong background noise. The verification results show that the proposed method gives a clearer indication of gear fault characteristics with different tooth breakages and the different signal-noise ratio (SNR) than the conventional EMD and LMD methods. Finally, the fault characteristic frequency of a damaged gear suggests that the proposed SS-AEWT method can accurately and reliably diagnose faults of a gearbox.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
景笑天发布了新的文献求助10
刚刚
刚刚
微笑二娘发布了新的文献求助10
1秒前
Cheng发布了新的文献求助10
1秒前
1秒前
浮游应助niuniu采纳,获得10
1秒前
小白小王发布了新的文献求助10
2秒前
李健的小迷弟应助雪居兔采纳,获得10
2秒前
2秒前
2秒前
快乐映秋完成签到,获得积分10
3秒前
leekle完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
ououya发布了新的文献求助30
4秒前
wing完成签到,获得积分10
4秒前
碎片完成签到,获得积分10
5秒前
丘小易完成签到,获得积分10
5秒前
5秒前
5秒前
leoxu完成签到,获得积分20
6秒前
6秒前
FashionBoy应助于丽萍采纳,获得10
7秒前
研友_1066发布了新的文献求助10
8秒前
星辰大海应助沙拉酱采纳,获得10
8秒前
8秒前
9秒前
9秒前
仔仔发布了新的文献求助10
9秒前
英俊的铭应助animato采纳,获得10
10秒前
自由的海燕应助cczltdy采纳,获得10
10秒前
10秒前
11秒前
卓垚发布了新的文献求助10
11秒前
Alioth完成签到,获得积分10
11秒前
11秒前
jie酱拌面应助nikehy采纳,获得10
11秒前
12秒前
科研通AI6应助尊敬谷波采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577394
求助须知:如何正确求助?哪些是违规求助? 3996655
关于积分的说明 12373185
捐赠科研通 3670647
什么是DOI,文献DOI怎么找? 2022943
邀请新用户注册赠送积分活动 1057104
科研通“疑难数据库(出版商)”最低求助积分说明 944067