拓扑绝缘体
凝聚态物理
材料科学
物理
拓扑(电路)
过渡金属
化学
数学
生物化学
组合数学
催化作用
作者
Fengcheng Wu,Timothy Lovorn,Emanuel Tutuc,Ivar Martin,A. H. MacDonald
标识
DOI:10.1103/physrevlett.122.086402
摘要
We show that moir\'e bands of twisted homobilayers can be topologically nontrivial, and illustrate the tendency by studying valence band states in $\ifmmode\pm\else\textpm\fi{}K$ valleys of twisted bilayer transition metal dichalcogenides, in particular, bilayer ${\mathrm{MoTe}}_{2}$. Because of the large spin-orbit splitting at the monolayer valence band maxima, the low energy valence states of the twisted bilayer ${\mathrm{MoTe}}_{2}$ at the $+K$ ($\ensuremath{-}K$) valley can be described using a two-band model with a layer-pseudospin magnetic field $\mathbf{\ensuremath{\Delta}}(\mathbit{r})$ that has the moir\'e period. We show that $\mathbf{\ensuremath{\Delta}}(\mathbit{r})$ has a topologically nontrivial skyrmion lattice texture in real space, and that the topmost moir\'e valence bands provide a realization of the Kane-Mele quantum spin-Hall model, i.e., the two-dimensional time-reversal-invariant topological insulator. Because the bands narrow at small twist angles, a rich set of broken symmetry insulating states can occur at integer numbers of electrons per moir\'e cell.
科研通智能强力驱动
Strongly Powered by AbleSci AI