亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fuzzy Mutual Information-Based Multilabel Feature Selection With Label Dependency and Streaming Labels

计算机科学 特征选择 依赖关系(UML) 利用 人工智能 特征(语言学) 冗余(工程) 相互信息 相关性(法律) 机器学习 选择(遗传算法) 数据挖掘 模糊逻辑 模式识别(心理学) 哲学 语言学 计算机安全 政治学 法学 操作系统
作者
Jinghua Liu,Yaojin Lin,Weiping Ding,Hongbo Zhang,Ji‐Xiang Du
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (1): 77-91 被引量:52
标识
DOI:10.1109/tfuzz.2022.3182441
摘要

Multilabel feature selection (MFS) has received widespread attention in various big data applications. However, most of the existing methods either explicitly or implicitly assume that all labels are given in advance before feature selection starts; or that all labels are independent. In fact, in many practical applications, the available labels usually arrive dynamically, and they may be interdependent with each other. Moreover, labels may be generated dynamically in a minibatch manner, which makes it more difficult to explore label dependency. In this article, we propose a novel fuzzy mutual information-based multilabel feature selection approach MSDS, which is able to solve single streaming label, minibatch streaming labels, and exploit label dependency simultaneously. In specific, we first promote fuzzy mutual information to be suitable for multilabel learning. This model can effectively consider the relationship between two labels, and has good applicability for measuring the relationship between multiple labels. Then, we analyze feature relevance and feature redundancy based on the combination of label dependency and streaming labels, which helps to facilitate the selection of high-quality feature subsets. Finally, a feature conversion is designed to fuse the representative features of new arrival streaming labels. Comprehensive experiments on twelve multilabel datasets clearly reveal the superiority of the proposed method against two streaming labels based algorithms and five state-of-the-art static label space based algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助Wei采纳,获得10
1秒前
14秒前
烂漫白容发布了新的文献求助30
18秒前
充电宝应助uppercrusteve采纳,获得10
19秒前
胖小羊完成签到 ,获得积分10
21秒前
想毕业的王桑~完成签到,获得积分10
31秒前
31秒前
40秒前
xu发布了新的文献求助10
46秒前
科研通AI2S应助科研通管家采纳,获得10
49秒前
万能图书馆应助cjh采纳,获得10
51秒前
xu完成签到,获得积分20
57秒前
1分钟前
cjh发布了新的文献求助10
1分钟前
1分钟前
kklkimo完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
cjh发布了新的文献求助10
1分钟前
1分钟前
cjh发布了新的文献求助10
2分钟前
xxfsx应助Wei采纳,获得20
2分钟前
ZhaoW驳回了MchemG应助
2分钟前
sakura完成签到,获得积分10
3分钟前
我是老大应助cjh采纳,获得10
3分钟前
3分钟前
3分钟前
cjh发布了新的文献求助10
3分钟前
开朗小饼干完成签到,获得积分10
3分钟前
传奇3应助悦耳的冷松采纳,获得10
3分钟前
伊逍遥完成签到,获得积分10
4分钟前
4分钟前
烂漫白容完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
sanler发布了新的文献求助10
4分钟前
香蕉觅云应助悦耳的冷松采纳,获得10
4分钟前
4分钟前
科研通AI6应助Huzhu采纳,获得20
4分钟前
可爱的函函应助cjh采纳,获得10
5分钟前
sanler完成签到,获得积分20
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476529
求助须知:如何正确求助?哪些是违规求助? 4578120
关于积分的说明 14363472
捐赠科研通 4506138
什么是DOI,文献DOI怎么找? 2469129
邀请新用户注册赠送积分活动 1456557
关于科研通互助平台的介绍 1430364