Progress and perspectives of in-situ optical monitoring in laser beam welding: Sensing, characterization and modeling

过程(计算) 材料科学 焊接 灵活性(工程) 表征(材料科学) 计算机科学 在制品 机械工程 系统工程 纳米技术 工程类 运营管理 数学 统计 操作系统
作者
Di Wu,Peilei Zhang,Zhishui Yu,Yanfeng Gao,Hua Zhang,Huabin Chen,Shanben Chen,Yingtao Tian
出处
期刊:Journal of Manufacturing Processes [Elsevier BV]
卷期号:75: 767-791 被引量:57
标识
DOI:10.1016/j.jmapro.2022.01.044
摘要

Laser beam welding manufacturing (LBW), being a promising joining technology with superior capabilities of high-precision, good-flexibility and deep penetration, has attracted considerable attention over the academic and industry circles. To date, the lack of repeatability and stability are still regarded as the critical technological barrier that hinders its broader applications especially for high-value products with demanding requirements. One significant approach to overcome this formidable challenge is in-situ monitoring combined with artificial intelligence (AI) techniques, which has been explored by great research efforts. The main goal of monitoring is to gather essential information on the process and to improve the understanding of the occurring complicated weld phenomena. This review firstly describes ongoing work on the in-situ optical sensing, behavior characterization and process modeling during dynamic LBW process. Then, much emphasis has been placed on the optical radiation techniques, such as multi-spectral photodiode, spectrometer, pyrometer and high-speed camera for observing the laser physical phenomenon including melt pool, keyhole and vapor plume. In particular, the advanced image/signal processing techniques and machine-learning models are addressed, in order to identify the correlations between process parameters, process signatures and product qualities. Finally, the major challenges and potential solutions are discussed to provide an insight on what still needs to be achieved in the field of process monitoring for metal-based LBW processes. This comprehensive review is intended to provide a reference of the state-of-the-art for those seeking to introduce intelligent welding capabilities as they improve and control the welding quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
无心的无施完成签到,获得积分10
2秒前
2秒前
水门发布了新的文献求助30
2秒前
百草27完成签到,获得积分10
3秒前
6秒前
华仔应助视野胤采纳,获得10
6秒前
登山人发布了新的文献求助10
6秒前
6秒前
FashionBoy应助山淮采纳,获得10
7秒前
彩色诗云完成签到 ,获得积分10
7秒前
杰青发布了新的文献求助10
8秒前
8秒前
思敏发布了新的文献求助10
9秒前
过时的电灯胆完成签到 ,获得积分10
9秒前
小马完成签到,获得积分20
11秒前
11秒前
今后应助杰青采纳,获得10
12秒前
视野胤完成签到,获得积分10
13秒前
内向绿竹应助lam采纳,获得10
13秒前
manan发布了新的文献求助10
13秒前
视野胤发布了新的文献求助10
15秒前
ws123发布了新的文献求助10
16秒前
大眼睛的草莓完成签到,获得积分10
17秒前
杰青完成签到,获得积分20
17秒前
我是老大应助土豆金采纳,获得10
18秒前
Orange应助思敏采纳,获得10
18秒前
独特的土豆完成签到,获得积分10
18秒前
18秒前
我是老大应助登山人采纳,获得10
19秒前
桐桐应助zuoyingying采纳,获得10
19秒前
wxq关闭了wxq文献求助
19秒前
21秒前
21秒前
22秒前
0514gr完成签到,获得积分10
22秒前
xixixi发布了新的文献求助10
24秒前
张三发布了新的文献求助10
24秒前
山淮发布了新的文献求助10
25秒前
amwlsai完成签到,获得积分10
25秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789448
求助须知:如何正确求助?哪些是违规求助? 3334410
关于积分的说明 10270135
捐赠科研通 3050885
什么是DOI,文献DOI怎么找? 1674216
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760732