Focused plasmonic trapping of metallic particles

光学镊子 等离子体子 俘获 镊子 光学力 散射 材料科学 压力梯度力 粒子(生态学) 米氏散射 数值孔径 联轴节(管道) 光学 光圈(计算机存储器) 表面等离子体子 光散射 分子物理学 物理 光电子学 波长 地质学 海洋学 生物 冶金 声学 生态学
作者
Changjun Min,Zhe Shen,Junfeng Shen,Yuquan Zhang,Hui Fang,Guanghui Yuan,Luping Du,Siwei Zhu,Ting Lei,Xiaocong Yuan
出处
期刊:Nature Communications [Springer Nature]
卷期号:4 (1) 被引量:348
标识
DOI:10.1038/ncomms3891
摘要

Scattering forces in focused light beams push away metallic particles. Thus, trapping metallic particles with conventional optical tweezers, especially those of Mie particle size, is difficult. Here we investigate a mechanism by which metallic particles are attracted and trapped by plasmonic tweezers when surface plasmons are excited and focused by a radially polarized beam in a high-numerical-aperture microscopic configuration. This contrasts the repulsion exerted in optical tweezers with the same configuration. We believe that different types of forces exerted on particles are responsible for this contrary trapping behaviour. Further, trapping with plasmonic tweezers is found not to be due to a gradient force balancing an opposing scattering force but results from the sum of both gradient and scattering forces acting in the same direction established by the strong coupling between the metallic particle and the highly focused plasmonic field. Theoretical analysis and simulations yield good agreement with experimental results. Focused light beams can be used as optical tweezers for manipulating small dielectric particles, but they normally repel metallic ones. By exploiting surface plasmons excited by a radially polarized beam, Min et al.show that it is possible to trap metallic particles with diameters up to 2.2 μm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
马静雨完成签到,获得积分20
1秒前
2秒前
2秒前
快乐小白菜应助shenzhou9采纳,获得10
2秒前
无花果应助aertom采纳,获得10
2秒前
小田发布了新的文献求助10
2秒前
sankumao发布了新的文献求助30
2秒前
奋斗的盼柳完成签到 ,获得积分10
3秒前
4秒前
Jasper应助handsomecat采纳,获得10
4秒前
4秒前
李雪完成签到,获得积分10
5秒前
5秒前
sv发布了新的文献求助10
7秒前
小田完成签到,获得积分10
7秒前
茶茶完成签到,获得积分20
7秒前
苏兴龙完成签到,获得积分10
7秒前
坚强的亦云-333完成签到,获得积分10
7秒前
Ava应助dan1029采纳,获得10
8秒前
8秒前
8秒前
奶糖最可爱完成签到,获得积分10
9秒前
9秒前
mojomars发布了新的文献求助10
10秒前
幽壑之潜蛟应助茶茶采纳,获得10
10秒前
11秒前
11秒前
11秒前
迅速海云完成签到,获得积分10
11秒前
sjxx发布了新的文献求助10
11秒前
11秒前
乐乐应助Rachel采纳,获得10
12秒前
12秒前
12秒前
天天快乐应助孤独的珩采纳,获得10
13秒前
帅气鹭洋发布了新的文献求助20
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794