质谱法
化学
气溶胶
分光计
电离
汽化
分析化学(期刊)
电子电离
表征(材料科学)
质谱
离子
纳米技术
光学
环境化学
物理
色谱法
材料科学
有机化学
作者
Manjula R. Canagaratna,John T. Jayne,José L. Jimenez,J. D. Allan,M. Rami Alfarra,Q. Zhang,T. B. Onasch,Frank Drewnick,Hugh Coe,A. M. Middlebrook,A. E. Delia,Leah R. Williams,A. Trimborn,M. J. Northway,P. F. DeCarlo,C. E. Kolb,P. Davidovits,Douglas R. Worsnop
摘要
The application of mass spectrometric techniques to the real-time measurement and characterization of aerosols represents a significant advance in the field of atmospheric science. This review focuses on the aerosol mass spectrometer (AMS), an instrument designed and developed at Aerodyne Research, Inc. (ARI) that is the most widely used thermal vaporization AMS. The AMS uses aerodynamic lens inlet technology together with thermal vaporization and electron-impact mass spectrometry to measure the real-time non-refractory (NR) chemical speciation and mass loading as a function of particle size of fine aerosol particles with aerodynamic diameters between approximately 50 and 1,000 nm. The original AMS utilizes a quadrupole mass spectrometer (Q) with electron impact (EI) ionization and produces ensemble average data of particle properties. Later versions employ time-of-flight (ToF) mass spectrometers and can produce full mass spectral data for single particles. This manuscript presents a detailed discussion of the strengths and limitations of the AMS measurement approach and reviews how the measurements are used to characterize particle properties. Results from selected laboratory experiments and field measurement campaigns are also presented to highlight the different applications of this instrument. Recent instrumental developments, such as the incorporation of softer ionization techniques (vacuum ultraviolet (VUV) photo-ionization, Li+ ion, and electron attachment) and high-resolution ToF mass spectrometers, that yield more detailed information about the organic aerosol component are also described.
科研通智能强力驱动
Strongly Powered by AbleSci AI