Learning non-cooperative game for load balancing under self-interested distributed environment

计算机科学 负载平衡(电力) 分布式计算 博弈论 人机交互
作者
Zheng Xiao,Zhao Tong,Keqin Li,Keqin Li
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:52: 376-386 被引量:19
标识
DOI:10.1016/j.asoc.2016.10.028
摘要

Graphical abstractDisplay Omitted HighlightsProvide a unified framework which characterizes inter or intra interactions.Enhance fairness among self-interested schedulers by Nash equilibrium of non-cooperative game.Propose a fairness aware scheme by reinforcement learning, adaptable without prior knowledge.Validate its fairness and effectiveness under varied utilization, heterogeneity, and size by simulation. Resources in large-scale distributed systems are distributed among several autonomous domains. These domains collaborate to produce significantly higher processing capacity through load balancing. However, resources in the same domain tend to be cooperative, whereas those in different domains are self-interested. Fairness is the key to collaboration under a self-interested environment. Accordingly, a fairness-aware load balancing algorithm is proposed. The load balancing problem is defined as a game. The Nash equilibrium solution for this problem minimizes the expected response time, while maintaining fairness. Furthermore, reinforcement learning is used to search for the Nash equilibrium. Compared with static approaches, this algorithm does not require a prior knowledge of job arrival and execution, and can adapt dynamically to these processes. The synthesized tests indicate that our algorithm is close to the optimal scheme in terms of overall expected response time under different system utilization, heterogeneity, and system size; it also ensures fairness similar to the proportional scheme. Trace simulation is conducted using the job workload log of the Scalable POWERpallel2 system in the San Diego Supercomputer Center. Our algorithm increases the expected response time by a maximum of 14%. But it improves fairness by 1227% in contrast to Opportunistic Load Balancing, Minimum Execution Time, Minimum Completion Time, Switching Algorithm, and k-Percent Best.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
软曲奇发布了新的文献求助10
刚刚
DD完成签到,获得积分10
1秒前
wyby完成签到,获得积分20
1秒前
呓语关注了科研通微信公众号
1秒前
包子完成签到,获得积分10
2秒前
岁岁发布了新的文献求助10
2秒前
李爱国应助清圆527采纳,获得10
2秒前
等度发布了新的文献求助30
3秒前
3秒前
3秒前
小录完成签到 ,获得积分10
3秒前
科研通AI6应助生科进行中采纳,获得10
4秒前
夜小娘发布了新的文献求助10
4秒前
绳索上行走完成签到,获得积分20
4秒前
4秒前
幽默人生发布了新的文献求助30
4秒前
小蘑菇应助炙热秋翠采纳,获得10
5秒前
5秒前
judy891zhu完成签到,获得积分10
5秒前
默默的弼完成签到 ,获得积分10
6秒前
6秒前
科研小白完成签到,获得积分10
6秒前
YH_Z完成签到 ,获得积分10
6秒前
7秒前
8秒前
sainthl发布了新的文献求助10
9秒前
软曲奇完成签到,获得积分10
10秒前
似水流年发布了新的文献求助10
10秒前
天天快乐应助开朗的一手采纳,获得10
10秒前
11秒前
柏林寒冬应助VLH采纳,获得10
11秒前
失眠自行车完成签到,获得积分10
12秒前
LQ发布了新的文献求助30
12秒前
温青阳关注了科研通微信公众号
13秒前
小青椒应助聪慧白玉采纳,获得30
13秒前
爆米花应助勤奋的子骞采纳,获得10
14秒前
又甘又刻完成签到,获得积分10
15秒前
传奇3应助雪白梦容采纳,获得10
15秒前
16秒前
清圆527发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5059034
求助须知:如何正确求助?哪些是违规求助? 4283912
关于积分的说明 13349986
捐赠科研通 4101331
什么是DOI,文献DOI怎么找? 2245425
邀请新用户注册赠送积分活动 1251203
关于科研通互助平台的介绍 1181858