已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Exploration of the mechanism of traditional Chinese medicine by AI approach using unsupervised machine learning for cellular functional similarity of compounds in heterogeneous networks, XiaoErFuPi granules as an example

聚类分析 机制(生物学) 计算机科学 人工智能 功能(生物学) 层次聚类 机器学习 相似性(几何) 计算生物学 生物 进化生物学 认识论 图像(数学) 哲学
作者
Feifei Guo,Xuan Tang,Wen Zhang,Junying Wei,Shihuan Tang,Hongwei Wu,Hongjun Yang
出处
期刊:Pharmacological Research [Elsevier BV]
卷期号:160: 105077-105077 被引量:34
标识
DOI:10.1016/j.phrs.2020.105077
摘要

'Polypharmacology' is usually used to describe the network-wide effect of a single compound, but traditional Chinese medicine (TCM) has a polypharmacological effect naturally based on the 'multi-components, multi-targets and multi-pathways' principle. It is a challenge to investigate the polypharmacology mechanism of TCM with multiple components. In this study, we used XiaoErFuPi (XEFP) granules as an example to describe an unsupervised learning strategy for polypharmacology research of TCM and to explore the mechanism of XEFP polypharmacology against multifactorial disease function dyspepsia (FD). Unsupervised clustering of compounds based on similarity evaluation of cellular function fingerprints showed that compounds of TCM without similar targets and chemical structure could also exert similar therapeutic effects on the same disease, as different targets participate in the same pathway closely associated with the pathological process. In this study, we proposed an unsupervised machine learning strategy for exploring the polypharmacology-based mechanism of TCM, utilizing hierarchical clustering based on cellular functional similarity, to establish a connection from the chemical clustering module to cellular function. Meanwhile, FDA-approved drugs against FD were used as references for the mechanism of action (MoA) of FD. First, according to the compound-compound network built by the similarity of cellular function of XEFP compounds and FDA-approved FD drugs, the possible therapeutic function of TCM may represent a known mechanism of FDA-approved drugs. Then, as unsupervised learning, hierarchical clustering of TCM compounds based on cellular function fingerprint similarity could help to classify the compounds into several modules with similar therapeutic functions to investigate the polypharmacology effect of TCM. Furthermore, the integration of quantitative omics data of TCM and approved drugs (from LINCS datasets) provides more quantitative evidence for TCM therapeutic function consistency with approved drugs. A spasmolytic activity experiment was launched to confirm vanillic acid activity to repress smooth muscle contraction; vanillic acid was also predicted to be active compound of XEFP, supporting the accuracy of our strategy. In summary, the approach proposed in this study provides a new unsupervised learning strategy for polypharmacological research investigating TCM by establishing a connection between the compound functional module and drug-activated cellular processes shared with FDA-approved drugs, which may elucidate the unique mechanism of traditional medicine using FDA-approved drugs as references, facilitate the discovery of potential active compounds of TCM and provide new insights into complex diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zuo完成签到,获得积分10
1秒前
andy完成签到,获得积分10
1秒前
2秒前
3秒前
田様应助小小旭呀采纳,获得10
5秒前
老虎皮完成签到,获得积分10
7秒前
7秒前
铁臂阿童木完成签到 ,获得积分10
7秒前
夹心发布了新的文献求助10
8秒前
10秒前
ll应助哈哈哈哈哈采纳,获得10
10秒前
DS完成签到,获得积分10
11秒前
华仔应助小白采纳,获得10
11秒前
111发布了新的文献求助10
13秒前
mbb完成签到,获得积分10
15秒前
17秒前
陈好关注了科研通微信公众号
20秒前
陈好关注了科研通微信公众号
20秒前
烟花应助黄垚采纳,获得10
24秒前
吉吉吉完成签到 ,获得积分10
24秒前
卢建军应助恶恶么v采纳,获得20
24秒前
情怀应助shinn采纳,获得10
25秒前
mbb发布了新的文献求助10
25秒前
26秒前
杰尼龟完成签到,获得积分10
26秒前
醉林完成签到 ,获得积分10
26秒前
27秒前
风趣的含羞草完成签到 ,获得积分10
27秒前
28秒前
zzz发布了新的文献求助10
30秒前
01发布了新的文献求助10
30秒前
一介尘埃完成签到 ,获得积分10
30秒前
夹心完成签到,获得积分20
31秒前
小唐发布了新的文献求助50
31秒前
orixero应助简单的雅蕊采纳,获得10
34秒前
花海发布了新的文献求助10
35秒前
诸乘风完成签到 ,获得积分10
36秒前
爆米花应助zzz采纳,获得10
37秒前
科研通AI5应助啧啧啧采纳,获得10
37秒前
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Immigrant Incorporation in East Asian Democracies 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3972554
求助须知:如何正确求助?哪些是违规求助? 3516969
关于积分的说明 11185709
捐赠科研通 3252381
什么是DOI,文献DOI怎么找? 1796442
邀请新用户注册赠送积分活动 876380
科研通“疑难数据库(出版商)”最低求助积分说明 805572