Identification of Vertebral Fractures by Convolutional Neural Networks to Predict Nonvertebral and Hip Fractures: A Registry-based Cohort Study of Dual X-ray Absorptiometry

医学 接收机工作特性 置信区间 危险系数 卷积神经网络 骨质疏松症 队列 回顾性队列研究 人工智能 比例危险模型 射线照相术 核医学 统计 放射科 内科学 计算机科学 数学
作者
Sheldon Derkatch,Christopher Kirby,Douglas Kimelman,Mohammad Jafari Jozani,Jennifer Davidson,William D. Leslie
出处
期刊:Radiology [Radiological Society of North America]
卷期号:293 (2): 405-411 被引量:76
标识
DOI:10.1148/radiol.2019190201
摘要

Background Detection of vertebral fractures (VFs) aids in management of osteoporosis and targeting of fracture prevention therapies. Purpose To determine whether convolutional neural networks (CNNs) can be trained to identify VFs at VF assessment (VFA) performed with dual-energy x-ray absorptiometry and if VFs identified by CNNs confer a similar prognosis compared with the expert reader reference standard. Materials and Methods In this retrospective study, 12 742 routine clinical VFA images obtained from February 2010 to December 2017 and reported as VF present or absent were used for CNN training and testing. All reporting physicians were diagnostic imaging specialists with at least 10 years of experience. Randomly selected training and validation sets were used to produce a CNN ensemble that calculates VF probability. A test set (30%; 3822 images) was used to assess CNN agreement with the human expert reader reference standard and CNN prediction of incident non-VFs. Statistical analyses included area under the receiver operating characteristic curve, two-tailed Student t tests, prevalence- and bias-adjusted κ value, Kaplan-Meier curves, and Cox proportional hazard models. Results This study included 12 742 patients (mean age, 76 years ± 7; 12 013 women). The CNN ensemble demonstrated an area under the receiver operating characteristic curve of 0.94 (95% confidence interval [CI]: 0.93, 0.95) for VF detection that corresponded to sensitivity of 87.4% (534 of 611), specificity of 88.4% (2838 of 3211), and prevalence- and bias-adjusted κ value of 0.77. On the basis of incident fracture data available for 2813 patients (mean follow up, 3.7 years), hazard ratios adjusted for baseline fracture probability were 1.7 (95% CI: 1.3, 2.2) for CNN versus 1.8 (95% CI: 1.3, 2.3) for expert reader-detected VFs for incident non-VF and 2.3 (95% CI: 1.5, 3.5) versus 2.4 (95% CI: 1.5, 3.7) for incident hip fracture. Conclusion Convolutional neural networks can identify vertebral fractures on vertebral fracture assessment images with high accuracy, and these convolutional neural network-identified vertebral fractures predict clinical fracture outcomes. © RSNA, 2019 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
张文发布了新的文献求助10
刚刚
Unicorn发布了新的文献求助10
2秒前
飞飞完成签到,获得积分10
2秒前
ptalala完成签到,获得积分10
3秒前
kyle竣发布了新的文献求助10
3秒前
3秒前
共享精神应助谦谦采纳,获得10
4秒前
科研通AI6应助xiyan采纳,获得10
5秒前
junn发布了新的文献求助10
7秒前
7秒前
18859805972完成签到,获得积分10
8秒前
SoGoodMan发布了新的文献求助10
9秒前
阿强完成签到,获得积分10
10秒前
Hannah完成签到,获得积分10
10秒前
工力所完成签到,获得积分10
10秒前
伍德沃德完成签到 ,获得积分10
11秒前
11秒前
周久完成签到 ,获得积分10
12秒前
所所应助月上柳梢头采纳,获得10
13秒前
NexusExplorer应助123采纳,获得10
13秒前
13秒前
Zyl完成签到 ,获得积分10
14秒前
kkk发布了新的文献求助10
15秒前
高鑫发布了新的文献求助10
15秒前
WHr完成签到,获得积分10
16秒前
16秒前
16秒前
yanxi应助可靠采纳,获得10
17秒前
18秒前
18秒前
ZA2Pz7发布了新的文献求助10
18秒前
19秒前
谁动了我的旺仔完成签到 ,获得积分10
19秒前
Wakakak完成签到,获得积分20
20秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
隐形曼青应助WN采纳,获得10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532756
求助须知:如何正确求助?哪些是违规求助? 4621444
关于积分的说明 14578049
捐赠科研通 4561404
什么是DOI,文献DOI怎么找? 2499282
邀请新用户注册赠送积分活动 1479215
关于科研通互助平台的介绍 1450443