A multi-class scoring system based on CT features for preoperative prediction in gastric gastrointestinal stromal tumors.

医学 切断 逻辑回归 接收机工作特性 主旨 队列 弗雷明翰风险评分 放射科 推导 间质细胞 内科学 疾病 量子力学 物理 动脉
作者
Jianxia Xu,Jia-Ping Zhou,Xiaojie Wang,Shufeng Fan,Xiaoshan Huang,Xingwu Xie,Ri‐Sheng Yu
出处
期刊:PubMed 卷期号:10 (11): 3867-3881 被引量:15
链接
标识
摘要

Our study aimed to establish and validate a multi-class scoring system for preoperative gastric gastrointestinal stromal tumors (GISTs) risk stratifications based on CT features. 150 gastric GIST patients who underwent contrast-enhanced CT examination and surgical resection from hospital 1 were retrospectively analyzed as the training cohort, and 61 patients from hospitals 2 and 3 were included as the validation cohort. A model was established by logistic regression analysis and weighted to be a scoring model. A calibration test, area under the receiver operating characteristic (ROC) curve (AUC), and cutoff points were determined for the score model. The model was also divided into three score ranges for convenient clinical evaluation. Five CT features were included in the score model, including tumor size (4 points), ill-defined margin (6 points), intratumoral enlarged vessels (5 points), heterogeneous enhancement pattern (4 points), and exophytic or mixed growth pattern (2 points). Then, based on the calibration results, performance was merely assessed as very low and high* risk. The AUCs of the score model for very low risk and high* risk were 0.973 and 0.977, and the cutoff points were 3 points (97.30%, 93.81%) and 7 points (92.19%, 94.19%), respectively. In the validation cohort, the AUCs were 0.912 and 0.972, and the cutoff values were 3 points (92.31%, 85.42%) and 5 points (100%, 87.88%), respectively. The model was stratified into 3 ranges: 0-3 points for very low risk, 4-8 points for low risk, and 9-21 points for high* risk. A concise and practical score system for gastric GISTs risk stratification was proposed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
乐乐应助蒲蒲采纳,获得30
1秒前
麻薯发布了新的文献求助10
1秒前
啊锐完成签到,获得积分10
2秒前
曾经如风完成签到,获得积分10
2秒前
科研通AI2S应助思南欧采纳,获得10
2秒前
2秒前
武丝丝发布了新的文献求助10
3秒前
hkhk完成签到,获得积分10
3秒前
hihi发布了新的文献求助50
3秒前
sy发布了新的文献求助10
4秒前
4秒前
端庄幻桃完成签到 ,获得积分10
4秒前
4秒前
5秒前
稳重的菠萝应助xiaoli245采纳,获得10
5秒前
HuanChen完成签到,获得积分10
5秒前
迷了路的猫完成签到,获得积分10
6秒前
李健应助科研小白采纳,获得10
7秒前
dd完成签到,获得积分10
7秒前
SciGPT应助坚定的怀蕾采纳,获得10
7秒前
Wonder完成签到,获得积分10
8秒前
8秒前
8秒前
Eton完成签到,获得积分10
8秒前
鹿鹿完成签到,获得积分10
8秒前
白衣修身发布了新的文献求助10
9秒前
韩昊哲发布了新的文献求助10
9秒前
zhaoshao完成签到,获得积分10
9秒前
无花果应助麻薯采纳,获得10
9秒前
彭于晏应助草莓味的榴莲采纳,获得10
10秒前
Iris完成签到,获得积分10
10秒前
wenjing发布了新的文献求助20
10秒前
zxunxia发布了新的文献求助10
10秒前
10秒前
乐天完成签到,获得积分10
10秒前
BK完成签到,获得积分20
11秒前
11秒前
世外完成签到,获得积分10
12秒前
Akim应助名天采纳,获得10
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834177
求助须知:如何正确求助?哪些是违规求助? 3376774
关于积分的说明 10494951
捐赠科研通 3096188
什么是DOI,文献DOI怎么找? 1704868
邀请新用户注册赠送积分活动 820249
科研通“疑难数据库(出版商)”最低求助积分说明 771915