Machine Learning Algorithms for Early Detection of Bone Metastases in an Experimental Rat Model

微转移 磁共振成像 接收机工作特性 正电子发射断层摄影术 计算机科学 金标准(测试) 人工智能 医学 算法 机器学习 乳腺癌 人工神经网络 放射科 癌症 内科学
作者
Stephan Ellmann,Lisa Seyler,Clarissa Gillmann,Vanessa Popp,Christoph Treutlein,Aline Bözec,Michael Uder,Tobias Bäuerle
出处
期刊:Journal of Visualized Experiments [MyJOVE]
卷期号: (162) 被引量:5
标识
DOI:10.3791/61235
摘要

Machine learning (ML) algorithms permit the integration of different features into a model to perform classification or regression tasks with an accuracy exceeding its constituents. This protocol describes the development of an ML algorithm to predict the growth of breast cancer bone macrometastases in a rat model before any abnormalities are observable with standard imaging methods. Such an algorithm can facilitate the detection of early metastatic disease (i.e., micrometastasis) that is regularly missed during staging examinations. The applied metastasis model is site-specific, meaning that the rats develop metastases exclusively in their right hind leg. The model's tumor-take rate is 60%–80%, with macrometastases becoming visible in magnetic resonance imaging (MRI) and positron emission tomography/computed tomography (PET/CT) in a subset of animals 30 days after induction, whereas a second subset of animals exhibit no tumor growth. Starting from image examinations acquired at an earlier time point, this protocol describes the extraction of features that indicate tissue vascularization detected by MRI, glucose metabolism by PET/CT, and the subsequent determination of the most relevant features for the prediction of macrometastatic disease. These features are then fed into a model-averaged neural network (avNNet) to classify the animals into one of two groups: one that will develop metastases and the other that will not develop any tumors. The protocol also describes the calculation of standard diagnostic parameters, such as overall accuracy, sensitivity, specificity, negative/positive predictive values, likelihood ratios, and the development of a receiver operating characteristic. An advantage of the proposed protocol is its flexibility, as it can be easily adapted to train a plethora of different ML algorithms with adjustable combinations of an unlimited number of features. Moreover, it can be used to analyze different problems in oncology, infection, and inflammation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷艳哈密瓜完成签到 ,获得积分10
1秒前
Archy发布了新的文献求助10
1秒前
3秒前
吃饱喝足就睡觉完成签到 ,获得积分10
3秒前
karna发布了新的文献求助10
5秒前
Milktea123发布了新的文献求助10
8秒前
lulu完成签到,获得积分10
8秒前
9秒前
李健的小迷弟应助九儿采纳,获得10
9秒前
ding应助好好好采纳,获得10
11秒前
小木虫启航完成签到,获得积分10
14秒前
xiying完成签到 ,获得积分10
15秒前
小全发布了新的文献求助30
15秒前
太叔半雪完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
19秒前
打打应助CYY采纳,获得10
20秒前
MinQi发布了新的文献求助30
21秒前
丘比特应助翊然甜周采纳,获得10
21秒前
zho发布了新的文献求助10
22秒前
HJJHJH发布了新的文献求助20
23秒前
赵赵赵发布了新的文献求助10
24秒前
25秒前
赘婿应助赵赵赵采纳,获得10
27秒前
27秒前
开心的桔子完成签到 ,获得积分10
28秒前
领导范儿应助闾丘博超采纳,获得10
28秒前
29秒前
加菲丰丰应助HJJHJH采纳,获得20
29秒前
狡猾肥鲶鱼完成签到,获得积分10
29秒前
娜娜发布了新的文献求助10
32秒前
33秒前
徐zhipei发布了新的文献求助10
34秒前
34秒前
34秒前
liujie发布了新的文献求助10
36秒前
37秒前
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780330
求助须知:如何正确求助?哪些是违规求助? 3325604
关于积分的说明 10223724
捐赠科研通 3040799
什么是DOI,文献DOI怎么找? 1669004
邀请新用户注册赠送积分活动 798962
科研通“疑难数据库(出版商)”最低求助积分说明 758648