环境流行病学
核(代数)
贝叶斯概率
计算机科学
健康效应
计量经济学
机器学习
回归
核方法
加性模型
协变量
环境污染
统计
数据挖掘
人工智能
数学
环境科学
环境卫生
支持向量机
医学
组合数学
环境保护
作者
Jennifer F. Bobb,Linda Valeri,Birgit Claus Henn,David C. Christiani,Robert O. Wright,Maitreyi Mazumdar,John J. Godleski,Brent A. Coull
出处
期刊:Biostatistics
[Oxford University Press]
日期:2014-12-22
卷期号:16 (3): 493-508
被引量:1464
标识
DOI:10.1093/biostatistics/kxu058
摘要
Because humans are invariably exposed to complex chemical mixtures, estimating the health effects of multi-pollutant exposures is of critical concern in environmental epidemiology, and to regulatory agencies such as the U.S. Environmental Protection Agency. However, most health effects studies focus on single agents or consider simple two-way interaction models, in part because we lack the statistical methodology to more realistically capture the complexity of mixed exposures. We introduce Bayesian kernel machine regression (BKMR) as a new approach to study mixtures, in which the health outcome is regressed on a flexible function of the mixture (e.g. air pollution or toxic waste) components that is specified using a kernel function. In high-dimensional settings, a novel hierarchical variable selection approach is incorporated to identify important mixture components and account for the correlated structure of the mixture. Simulation studies demonstrate the success of BKMR in estimating the exposure-response function and in identifying the individual components of the mixture responsible for health effects. We demonstrate the features of the method through epidemiology and toxicology applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI