A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems

参数化复杂度 参数统计 还原(数学) 计算机科学 动力系统理论 投影(关系代数) 非参数统计 参数化模型 比例(比率) 数学优化 数学 算法 计量经济学 物理 统计 几何学 量子力学
作者
Peter Benner,Serkan Gugercin,Karen Willcox
出处
期刊:Siam Review [Society for Industrial and Applied Mathematics]
卷期号:57 (4): 483-531 被引量:1663
标识
DOI:10.1137/130932715
摘要

Numerical simulation of large-scale dynamical systems plays a fundamental role in studying a wide range of complex physical phenomena; however, the inherent large-scale nature of the models often leads to unmanageable demands on computational resources. Model reduction aims to reduce this computational burden by generating reduced models that are faster and cheaper to simulate, yet accurately represent the original large-scale system behavior. Model reduction of linear, nonparametric dynamical systems has reached a considerable level of maturity, as reflected by several survey papers and books. However, parametric model reduction has emerged only more recently as an important and vibrant research area, with several recent advances making a survey paper timely. Thus, this paper aims to provide a resource that draws together recent contributions in different communities to survey the state of the art in parametric model reduction methods. Parametric model reduction targets the broad class of problems for which the equations governing the system behavior depend on a set of parameters. Examples include parameterized partial differential equations and large-scale systems of parameterized ordinary differential equations. The goal of parametric model reduction is to generate low-cost but accurate models that characterize system response for different values of the parameters. This paper surveys state-of-the-art methods in projection-based parametric model reduction, describing the different approaches within each class of methods for handling parametric variation and providing a comparative discussion that lends insights to potential advantages and disadvantages in applying each of the methods. We highlight the important role played by parametric model reduction in design, control, optimization, and uncertainty quantification---settings that require repeated model evaluations over different parameter values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
自然的新烟完成签到,获得积分10
1秒前
苏苏苏发布了新的文献求助10
1秒前
苏苏苏发布了新的文献求助10
2秒前
苏苏苏发布了新的文献求助10
2秒前
苏苏苏发布了新的文献求助10
2秒前
苏苏苏发布了新的文献求助10
2秒前
吴川发布了新的文献求助10
4秒前
4秒前
4秒前
科目三应助小张采纳,获得10
5秒前
6秒前
6秒前
7秒前
Lu发布了新的文献求助30
7秒前
7秒前
wwww完成签到 ,获得积分10
7秒前
小橙子发布了新的文献求助10
9秒前
科研通AI6应助炙热迎波采纳,获得30
9秒前
YeMa发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
lesliezeo完成签到 ,获得积分10
9秒前
着急的青枫应助cxm666采纳,获得20
10秒前
肖123发布了新的文献求助10
10秒前
波粒二象性完成签到,获得积分10
11秒前
11秒前
科研通AI6应助宁静采纳,获得10
11秒前
清爽文博发布了新的文献求助10
12秒前
12秒前
becl发布了新的文献求助10
12秒前
搜集达人应助鞭霆采纳,获得10
12秒前
六六完成签到,获得积分10
12秒前
七月发布了新的文献求助10
12秒前
12秒前
13秒前
lan发布了新的文献求助10
13秒前
聪慧的迎夏完成签到,获得积分10
14秒前
Sci666完成签到,获得积分10
15秒前
noodles完成签到 ,获得积分10
16秒前
missing发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5507223
求助须知:如何正确求助?哪些是违规求助? 4602576
关于积分的说明 14482228
捐赠科研通 4536619
什么是DOI,文献DOI怎么找? 2486284
邀请新用户注册赠送积分活动 1468838
关于科研通互助平台的介绍 1441315