Molecular Bond Engineering and Feature Learning for the Design of Hybrid Organic–Inorganic Perovskite Solar Cells with Strong Noncovalent Halogen–Cation Interactions

共价键 非共价相互作用 钙钛矿(结构) 化学空间 理论(学习稳定性) 卤键 化学物理 化学 空格(标点符号) 化学稳定性 卤素 计算化学 材料科学 分子 计算机科学 氢键 有机化学 机器学习 操作系统 药物发现 生物化学 烷基
作者
Johannes Teunissen,Fabiana Da Pieve
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:125 (45): 25316-25326 被引量:2
标识
DOI:10.1021/acs.jpcc.1c07295
摘要

Hybrid organic-inorganic perovskites are exceedingly interesting candidates for new solar energy technologies, for both ground-based and space applications. However, their large-scale production is hampered by the lack of long-term stability, mostly associated to ion migration. The specific role of non-covalent bonds in contributing to the stability remains elusive, and in certain cases controversial. Here, we perform an investigation on a large perovskite chemical space via a combination of first-principles calculations for the bond strengths and the recently developed Sure Independent Screening and Sparsifying Operator (SISSO) algorithm. The latter is used to formulate mathematical descriptors that, by highlighting the importance of specific non-covalent molecular bonds, can guide the design of perovskites with suppressed ion migration. The results unveil the distinct nature of different non-covalent interactions, with remarkable differences compared to previous arguments and interpretations in the literature on the basis of smaller chemical spaces. In particular, we clarify the origin of the higher stability offered by FA compared to MA, which shows to be different from previous arguments in the literature, the reasons of the improved stability given by the halogen F, and explain the exceptional case of overall stronger bonds for Guanidiunium. The found descriptors reveal the criteria that, within the stability boundaries given by the Goldschmidt factor, give an all-in-one picture of non-covalent interactions which provide the more stable configurations, also including interactions other than H-bonds. Such descriptors are more informative than previously used quantities and can be used as universal input to better inform new machine learning studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
旺旺碎发布了新的文献求助30
3秒前
WC241002292完成签到,获得积分10
4秒前
KinKrit发布了新的文献求助10
5秒前
8秒前
文献看不懂应助王振有采纳,获得10
8秒前
今天肝文献了吗关注了科研通微信公众号
9秒前
9秒前
10秒前
13秒前
华仔应助留胡子的霖采纳,获得30
14秒前
Mandy发布了新的文献求助10
14秒前
15秒前
宁静致远发布了新的文献求助10
16秒前
16秒前
Su发布了新的文献求助10
17秒前
科研通AI5应助艾克采纳,获得10
18秒前
医学小王发布了新的文献求助10
21秒前
23秒前
罗亚亚完成签到,获得积分10
23秒前
万能图书馆应助Mandy采纳,获得10
23秒前
24秒前
25秒前
英俊的铭应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
25秒前
英姑应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
酷波er应助科研通管家采纳,获得10
25秒前
大个应助科研通管家采纳,获得10
25秒前
领导范儿应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
所所应助科研通管家采纳,获得10
26秒前
26秒前
研友_VZG7GZ应助科研通管家采纳,获得10
26秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
bkagyin应助科研通管家采纳,获得10
26秒前
Owen应助科研通管家采纳,获得10
26秒前
26秒前
CipherSage应助科研通管家采纳,获得10
26秒前
充电宝应助科研通管家采纳,获得10
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776524
求助须知:如何正确求助?哪些是违规求助? 3322078
关于积分的说明 10208657
捐赠科研通 3037336
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757878