Upper endoscopy photodocumentation quality evaluation with novel deep learning system

医学 内窥镜检查 十二指肠 食管 内窥镜 放射科 普通外科 外科
作者
Yuan‐Yen Chang,Hsu‐Heng Yen,Pai‐Chi Li,Ruey‐Feng Chang,Chia Wei Yang,Yang‐Yuan Chen,Wen‐Yen Chang
出处
期刊:Digestive Endoscopy [Wiley]
卷期号:34 (5): 994-1001 被引量:11
标识
DOI:10.1111/den.14179
摘要

Visualization and photodocumentation during endoscopy procedures are suggested to be one indicator for endoscopy performance quality. However, this indicator is difficult to measure and audit manually in clinical practice. Artificial intelligence (AI) is an emerging technology that may solve this problem.A deep learning model with an accuracy of 96.64% was developed from 15,305 images for upper endoscopy anatomy classification in the unit. Endoscopy images for asymptomatic patients receiving screening endoscopy were evaluated with this model to assess the completeness of photodocumentation rate.A total of 15,723 images from 472 upper endoscopies performed by 12 endoscopists were enrolled. The complete photodocumentation rate from the pharynx to the duodenum was 53.8% and from the esophagus to the duodenum was 78.0% in this study. Endoscopists with a higher adenoma detection rate had a higher complete examination rate from the pharynx to duodenum (60.0% vs. 38.7%, P < 0.0001) and from esophagus to duodenum (83.0% vs. 65.7%, P < 0.0001) compared with endoscopists with lower adenoma detection rate. The pharynx, gastric angle, gastric retroflex view, gastric antrum, and the first portion of duodenum are likely to be missed by endoscopists with lower adenoma detection rates.We report the use of a deep learning model to audit endoscopy photodocumentation quality in our unit. Endoscopists with better performance in colonoscopy had a better performance for this quality indicator. The use of such an AI system may help the endoscopy unit audit endoscopy performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
落寞小蘑菇完成签到,获得积分10
1秒前
DQ发布了新的文献求助10
1秒前
2秒前
二巨头发布了新的文献求助10
3秒前
Sssssss完成签到 ,获得积分10
3秒前
3秒前
或无情完成签到 ,获得积分10
4秒前
LFJ完成签到,获得积分10
5秒前
执着的导师完成签到,获得积分10
6秒前
小蘑菇应助___采纳,获得10
7秒前
我要夏天发布了新的文献求助10
7秒前
赘婿应助黎洛洛采纳,获得10
9秒前
11秒前
13秒前
13秒前
hzx完成签到,获得积分10
14秒前
sciforce完成签到,获得积分10
14秒前
XHL完成签到,获得积分10
15秒前
16秒前
科研通AI5应助虚幻的玉米采纳,获得10
17秒前
17秒前
2426132085完成签到,获得积分10
19秒前
tjbdlyh完成签到 ,获得积分10
19秒前
987发布了新的文献求助10
21秒前
QAQ完成签到,获得积分10
22秒前
___发布了新的文献求助10
22秒前
qinqiny完成签到 ,获得积分10
23秒前
23秒前
QAQ发布了新的文献求助10
24秒前
jjj应助落后十八采纳,获得20
25秒前
飘逸千万发布了新的文献求助10
29秒前
30秒前
31秒前
矿渣完成签到,获得积分10
31秒前
欢呼的莆发布了新的文献求助10
34秒前
kingsman完成签到,获得积分10
34秒前
好旺发布了新的文献求助10
34秒前
发嗲的慕蕊完成签到 ,获得积分10
35秒前
38秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783306
求助须知:如何正确求助?哪些是违规求助? 3328584
关于积分的说明 10237387
捐赠科研通 3043770
什么是DOI,文献DOI怎么找? 1670643
邀请新用户注册赠送积分活动 799811
科研通“疑难数据库(出版商)”最低求助积分说明 759130