Global Tropical Cyclone Precipitation Estimation via a Multitask Convolutional Neural Network Based on HURSAT-B1 Data

降水 热带气旋 卷积神经网络 卫星 随机森林 计算机科学 环境科学 遥感 气象学 人工智能 地理 工程类 航空航天工程
作者
Mei Xue,Renlong Hang,Xiao–Tong Yuan,Pengfei Xiao,Qingshan Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-12 被引量:2
标识
DOI:10.1109/tgrs.2021.3126419
摘要

Fast and accurate global tropical cyclone (TC) precipitation estimation from satellite observations is still a challenging issue. In this article, we propose an effective model based on a multitask convolutional neural network (CNN) to estimate near-real-time global TC precipitation from HURSAT-B1 data. Our network mainly consists of three modules: the feature extraction module, the wind grade classification module, and the precipitation estimation module. The first module aims at extracting the spatial features of satellite imageries, the second module focuses on classifying the wind grades of the satellite imageries into six categories that are used to assist in estimating TC precipitation, and the third module is to estimate TC precipitation. To evaluate the effectiveness of our proposed model, we compare it with multiple linear regression (MLR) and random forest (RF) models based on integrated multisatellite retrievals for the global precipitation measurement (GPM) mission (IMERG). Besides, four typical TC events are selected to specifically analyze the temporal and spatial distribution of TC precipitation estimation. Experimental results show that the probability of detection and accuracy achieved by our proposed model are 0.68 and 0.81, while the correlation coefficient (CC) and MSE are 0.61 and 7.80, respectively. In terms of the four TC events, our proposed model obtains a more consistent and continuous spatial distribution of precipitation than MLR and RF. More importantly, our proposed model can achieve high spatiotemporal results, which has the potential to serve as an operational algorithm for global TC precipitation estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帅气鹭洋发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
2秒前
SCH_zhu完成签到,获得积分10
3秒前
lome发布了新的文献求助10
3秒前
6秒前
9秒前
luckin9完成签到,获得积分10
10秒前
帅气鹭洋完成签到,获得积分10
10秒前
12秒前
12秒前
廿九完成签到,获得积分10
12秒前
球球完成签到,获得积分10
12秒前
14秒前
14秒前
参商发布了新的文献求助10
16秒前
Phuniabo发布了新的文献求助10
18秒前
MAVS完成签到,获得积分10
18秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
传奇3应助HKQ采纳,获得10
20秒前
荀之玉发布了新的文献求助10
20秒前
20秒前
23秒前
23秒前
77完成签到,获得积分20
23秒前
烟花应助难过的谷芹采纳,获得10
24秒前
陈圈圈发布了新的文献求助10
25秒前
yi完成签到 ,获得积分20
25秒前
Youzi发布了新的文献求助10
26秒前
26秒前
28秒前
28秒前
可爱的函函应助Flos采纳,获得10
28秒前
29秒前
29秒前
77发布了新的文献求助10
30秒前
30秒前
淡然亦巧发布了新的文献求助10
30秒前
31秒前
31秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Logical form: From GB to Minimalism 5000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1800
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Biocontamination Control for Pharmaceuticals and Healthcare 2nd Edition 1300
Stereoelectronic Effects 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4202654
求助须知:如何正确求助?哪些是违规求助? 3737302
关于积分的说明 11767719
捐赠科研通 3409521
什么是DOI,文献DOI怎么找? 1870671
邀请新用户注册赠送积分活动 926214
科研通“疑难数据库(出版商)”最低求助积分说明 836473