A State Monitoring Method of Gas Regulator Station Based on Evidence Theory Driven by Time-Domain Information

计算机科学 时域 调节器 领域(数学分析) 国家(计算机科学) 控制理论(社会学) 控制工程 工程类 实时计算 人工智能 控制(管理) 算法 数学 基因 生物化学 数学分析 计算机视觉 化学
作者
Bo Wang,Jingyuan Jia,Zhihong Deng,Mengyin Fu
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:69 (1): 694-702 被引量:5
标识
DOI:10.1109/tie.2021.3055133
摘要

Regulator stations are widely used in gas transmission and distribution systems. Their state monitoring is of great significance to the safe operation of gas pipe networks. Due to the complexity of the working environment and the limitation of sensors, the acquired information is uncertain, which makes the state monitoring result prone to errors. The evidence theory has the ability to solve the uncertainty problem effectively. Most of the improvement methods of the evidence theory are in the spatial domain. These methods are not applicable to the fusion of the time-domain information. In this article, an improved method of the evidence theory is proposed for the state monitoring of a gas regulator station. It can meet the requirement of the dynamic fusion of the time-domain information. First, the back-propagation neural network is used to judge whether the evidence conflicts with each other. The simulation results demonstrate that it can judge the conflicts well. On this basis, the relative conflict factor is proposed to modify the evidence, and the calculation method of the adaptive time attenuation factor is proposed to reduce the accumulated error. The dynamic fusion of the time-domain information is realized by combining the time attenuation factor and the relative conflict factor. Finally, the proposed method is applied to the state monitoring of the gas regulator station. The feasibility and effectiveness of the method are verified by experiments. It verifies that the variation of the support degree of the proposed method for the correct proposition is 0.1478 higher than that of the temporal evidence combination based on relative reliability factor when the evidence is strongly conflicting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒适的藏花完成签到,获得积分10
4秒前
hlt完成签到 ,获得积分10
5秒前
6秒前
6秒前
zplease完成签到,获得积分10
7秒前
郑雅柔完成签到 ,获得积分0
8秒前
南浅发布了新的文献求助10
9秒前
andy发布了新的文献求助10
11秒前
HEAUBOOK应助chen采纳,获得10
11秒前
奋斗的醉柳完成签到,获得积分10
12秒前
打打应助andy采纳,获得10
14秒前
jenningseastera应助MOLLY采纳,获得10
15秒前
维拉帕米完成签到,获得积分10
16秒前
moon完成签到 ,获得积分10
17秒前
Stalin发布了新的文献求助20
20秒前
SciGPT应助曾经电源采纳,获得10
21秒前
科研通AI5应助小方采纳,获得10
22秒前
万能图书馆应助lzjz采纳,获得30
22秒前
24秒前
犹豫花卷完成签到,获得积分20
25秒前
领导范儿应助四角水采纳,获得10
28秒前
栗子馅发布了新的文献求助10
29秒前
犹豫花卷发布了新的文献求助200
29秒前
一闪一闪亮晶晶完成签到 ,获得积分10
30秒前
bkagyin应助大佬采纳,获得10
31秒前
chen完成签到,获得积分10
32秒前
37秒前
37秒前
央央关注了科研通微信公众号
38秒前
Doct完成签到,获得积分10
38秒前
38秒前
38秒前
39秒前
41秒前
四角水发布了新的文献求助10
42秒前
大佬发布了新的文献求助10
43秒前
小研发布了新的文献求助10
43秒前
科研通AI5应助小方采纳,获得10
44秒前
46秒前
曾经电源发布了新的文献求助10
46秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800297
求助须知:如何正确求助?哪些是违规求助? 3345583
关于积分的说明 10325859
捐赠科研通 3062057
什么是DOI,文献DOI怎么找? 1680741
邀请新用户注册赠送积分活动 807201
科研通“疑难数据库(出版商)”最低求助积分说明 763557