Underwater Biological Detection Algorithm Based on Improved Faster-RCNN

水下 计算机科学 人工智能 模式识别(心理学) 跳跃式监视 特征提取 特征(语言学) 棱锥(几何) 骨干网 算法 数学 几何学 海洋学 地质学 哲学 语言学 计算机网络
作者
Pengfei Shi,Xiwang Xu,Jianjun Ni,Yuanxue Xin,Weisheng Huang,Song Han
出处
期刊:Water [Multidisciplinary Digital Publishing Institute]
卷期号:13 (17): 2420-2420 被引量:31
标识
DOI:10.3390/w13172420
摘要

Underwater organisms are an important part of the underwater ecological environment. More and more attention has been paid to the perception of underwater ecological environment by intelligent means, such as machine vision. However, many objective reasons affect the accuracy of underwater biological detection, such as the low-quality image, different sizes or shapes, and overlapping or occlusion of underwater organisms. Therefore, this paper proposes an underwater biological detection algorithm based on improved Faster-RCNN. Firstly, the ResNet is used as the backbone feature extraction network of Faster-RCNN. Then, BiFPN (Bidirectional Feature Pyramid Network) is used to build a ResNet–BiFPN structure which can improve the capability of feature extraction and multi-scale feature fusion. Additionally, EIoU (Effective IoU) is used to replace IoU to reduce the proportion of redundant bounding boxes in the training data. Moreover, K-means++ clustering is used to generate more suitable anchor boxes to improve detection accuracy. Finally, the experimental results show that the detection accuracy of underwater biological detection algorithm based on improved Faster-RCNN on URPC2018 dataset is improved to 88.94%, which is 8.26% higher than Faster-RCNN. The results fully prove the effectiveness of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
6秒前
gnufgg完成签到,获得积分10
7秒前
li发布了新的文献求助10
7秒前
七七八八点半了完成签到,获得积分10
13秒前
shmorby完成签到 ,获得积分10
15秒前
英俊的铭应助WissF-采纳,获得10
15秒前
遇晴发布了新的文献求助10
17秒前
18秒前
天玄一刀发布了新的文献求助10
22秒前
阿治发布了新的文献求助30
23秒前
江流儿完成签到 ,获得积分10
23秒前
Orange应助GAS采纳,获得10
24秒前
24秒前
舒服的寻云完成签到 ,获得积分20
25秒前
渭水飞熊完成签到,获得积分10
26秒前
传统的又蓝完成签到,获得积分10
26秒前
etal5535发布了新的文献求助10
27秒前
财来完成签到 ,获得积分10
28秒前
29秒前
AUBECHU发布了新的文献求助10
29秒前
富贵儿完成签到 ,获得积分10
30秒前
32秒前
行之发布了新的文献求助10
33秒前
orixero应助汪汪汪采纳,获得10
34秒前
HarryChan应助月月采纳,获得10
35秒前
Hhl完成签到,获得积分10
36秒前
38秒前
ikun在此完成签到,获得积分10
38秒前
田様应助Two-Capitals采纳,获得10
39秒前
遇晴完成签到,获得积分10
39秒前
FashionBoy应助天玄一刀采纳,获得10
40秒前
慕青应助科研通管家采纳,获得30
41秒前
CipherSage应助科研通管家采纳,获得10
41秒前
李健应助科研通管家采纳,获得10
41秒前
香蕉觅云应助科研通管家采纳,获得10
41秒前
无花果应助科研通管家采纳,获得10
41秒前
ED应助科研通管家采纳,获得10
41秒前
爆米花应助科研通管家采纳,获得10
41秒前
鸣笛应助科研通管家采纳,获得30
42秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3942767
求助须知:如何正确求助?哪些是违规求助? 3487912
关于积分的说明 11045918
捐赠科研通 3218417
什么是DOI,文献DOI怎么找? 1778931
邀请新用户注册赠送积分活动 864463
科研通“疑难数据库(出版商)”最低求助积分说明 799540