亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SoilGrids250m: Global gridded soil information based on machine learning

随机森林 地形地貌 土壤质地 梯度升压 土壤科学 环境科学 土壤图 航天飞机雷达地形任务 集成学习 空间变异性 标准差 计算机科学 土地覆盖 遥感 人工智能 地图学 数学 土地利用 数字高程模型 统计 地质学 土壤水分 工程类 土木工程 地理
作者
Tomislav Hengl,Jorge Mendes de Jesus,G.B.M. Heuvelink,M. Ruiperez González,Milan Kilibarda,Aleksandar Blagotić,Wei Shangguan,Marvin N. Wright,Xiaoyuan Geng,Bernhard Bauer-Marschallinger,Mário Guevara,Rodrigo Vargas,R.A. MacMillan,N.H. Batjes,J.G.B. Leenaars,Eloi Ribeiro,Ichsani Wheeler,S. Mantel,Bas Kempen
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:12 (2): e0169748-e0169748 被引量:4021
标识
DOI:10.1371/journal.pone.0169748
摘要

This paper describes the technical development and accuracy assessment of the most recent and improved version of the SoilGrids system at 250m resolution (June 2016 update). SoilGrids provides global predictions for standard numeric soil properties (organic carbon, bulk density, Cation Exchange Capacity (CEC), pH, soil texture fractions and coarse fragments) at seven standard depths (0, 5, 15, 30, 60, 100 and 200 cm), in addition to predictions of depth to bedrock and distribution of soil classes based on the World Reference Base (WRB) and USDA classification systems (ca. 280 raster layers in total). Predictions were based on ca. 150,000 soil profiles used for training and a stack of 158 remote sensing-based soil covariates (primarily derived from MODIS land products, SRTM DEM derivatives, climatic images and global landform and lithology maps), which were used to fit an ensemble of machine learning methods—random forest and gradient boosting and/or multinomial logistic regression—as implemented in the R packages ranger, xgboost, nnet and caret. The results of 10–fold cross-validation show that the ensemble models explain between 56% (coarse fragments) and 83% (pH) of variation with an overall average of 61%. Improvements in the relative accuracy considering the amount of variation explained, in comparison to the previous version of SoilGrids at 1 km spatial resolution, range from 60 to 230%. Improvements can be attributed to: (1) the use of machine learning instead of linear regression, (2) to considerable investments in preparing finer resolution covariate layers and (3) to insertion of additional soil profiles. Further development of SoilGrids could include refinement of methods to incorporate input uncertainties and derivation of posterior probability distributions (per pixel), and further automation of spatial modeling so that soil maps can be generated for potentially hundreds of soil variables. Another area of future research is the development of methods for multiscale merging of SoilGrids predictions with local and/or national gridded soil products (e.g. up to 50 m spatial resolution) so that increasingly more accurate, complete and consistent global soil information can be produced. SoilGrids are available under the Open Data Base License.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hb完成签到,获得积分10
2秒前
短巷完成签到 ,获得积分10
3秒前
9秒前
11秒前
15秒前
风一样的我完成签到 ,获得积分0
15秒前
量子星尘发布了新的文献求助10
16秒前
WB87应助NNNN采纳,获得10
19秒前
吴彦祖发布了新的文献求助10
19秒前
皮灵犀完成签到,获得积分10
20秒前
浮游应助xiaoxili采纳,获得10
24秒前
25秒前
Kylin发布了新的文献求助10
30秒前
Akim应助你嵙这个期刊没买采纳,获得50
33秒前
领导范儿应助可乐采纳,获得10
36秒前
隐形曼青应助azee采纳,获得10
37秒前
妙玄发布了新的文献求助30
39秒前
tq完成签到,获得积分20
39秒前
领导范儿应助皮灵犀采纳,获得10
39秒前
土豪的洋葱完成签到,获得积分10
41秒前
共享精神应助一点采纳,获得10
49秒前
Cc完成签到 ,获得积分10
50秒前
54秒前
54秒前
56秒前
57秒前
fyy完成签到 ,获得积分10
58秒前
Yolanda发布了新的文献求助10
59秒前
一点发布了新的文献求助10
59秒前
喜悦的半青完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
第五元素完成签到,获得积分10
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422398
求助须知:如何正确求助?哪些是违规求助? 4537287
关于积分的说明 14156964
捐赠科研通 4453838
什么是DOI,文献DOI怎么找? 2443106
邀请新用户注册赠送积分活动 1434452
关于科研通互助平台的介绍 1411546