GSH-Responsive Heterodimeric Dual-Targeted Nanomedicine Modulates EMT to Conquer Paclitaxel-Induced Invasive Breast Cancer Metastasis

化学 紫杉醇 纳米医学 癌症研究 乳腺癌 转移 癌症 内科学 纳米技术 纳米颗粒 医学 材料科学 生物
作者
Ying Chen,Yao Chen,Hong Xu,Jianan Liu,Yan Wang,Ying‐Jie Zeng,Hongyu Chen,Yuening Cao,Chen Sun,Xian Ge,Tingting Zhang,Xiaoke Shi,Xiujun Cao,Yilan Liu,Bo Ren,Tianbao Wang,Jun Lü
出处
期刊:Bioconjugate Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.bioconjchem.5c00145
摘要

Paclitaxel (PTX), although effective against primary breast cancer, presents formidable clinical challenges due to severe toxicity and pro-metastatic potential, a critical concern as distant metastasis causes 90% of breast cancer-related deaths. To address these limitations, we designed and prepared a tumor microenvironment-responsive nanoprodrug, PTX-SS-3'HPT@RGD-HA NPs, that engineered RGD peptide-modified hyaluronic acid (HA) nanocarriers encapsulating the antimetastatic 3'-hydroxy pterostilbene (3'HPT) and PTX heterodimer linked by a glutathione (GSH)-cleavable disulfide bond. These nanoparticles targeting CD44 and αvβ receptors overexpressed in aggressive breast cancer cells and synergized enhanced permeability and retention effects with receptor-mediated endocytosis, facilitating superior tumor-specific drug deposition and GSH-activated payload release in vitro and in vivo. Moreover, PTX-SS-3'HPT@RGD-HA NPs achieved excellent tumor growth inhibition while mitigating systemic toxicity and metastatic risks in 4T1 tumor-bearing mice. Mechanistically, 3'HPT counteracted PTX-induced epithelial-mesenchymal transition by downregulating MMP-9/N-cadherin and restoring E-cadherin expression, thereby neutralizing PTX-triggered pro-metastatic effects. This study pioneers a dual-targeted, toxicity-shielding nanoplatform that simultaneously improves therapeutic efficacy and addresses chemotherapy-driven metastasis, offering a revolutionary strategy for managing highly invasive breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
今后应助苏雨康采纳,获得10
3秒前
爆米花应助奇点采纳,获得10
3秒前
lost发布了新的文献求助10
6秒前
1z6发布了新的文献求助10
6秒前
星星发布了新的文献求助10
6秒前
英姑应助SQ采纳,获得10
8秒前
9秒前
认真的半山完成签到,获得积分20
9秒前
11秒前
ll发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
lcx0779完成签到 ,获得积分10
13秒前
这个大头张呀完成签到,获得积分10
14秒前
14秒前
14秒前
Calvin完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
lost完成签到,获得积分10
17秒前
树池完成签到,获得积分10
18秒前
科研文献搬运工完成签到,获得积分0
19秒前
19秒前
19秒前
jinyue完成签到,获得积分10
19秒前
19秒前
20秒前
萨芬撒发布了新的文献求助10
20秒前
萨芬撒发布了新的文献求助10
20秒前
萨芬撒发布了新的文献求助10
20秒前
萨芬撒发布了新的文献求助10
20秒前
萨芬撒发布了新的文献求助10
20秒前
萨芬撒发布了新的文献求助10
20秒前
雨季佯完成签到,获得积分10
22秒前
23秒前
苏雨康发布了新的文献求助10
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776812
求助须知:如何正确求助?哪些是违规求助? 3322237
关于积分的说明 10209395
捐赠科研通 3037506
什么是DOI,文献DOI怎么找? 1666749
邀请新用户注册赠送积分活动 797656
科研通“疑难数据库(出版商)”最低求助积分说明 757976