清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Real-time monitoring and early warning system for hydropower safety based on the internet of things

预警系统 物联网 水力发电 互联网 预警系统 安全监测 计算机科学 计算机安全 实时计算 嵌入式系统 工程类 电信 万维网 电气工程 生物信息学 生物
作者
Jian Xu,Junzhong Chen
出处
期刊:Intelligent Decision Technologies [IOS Press]
标识
DOI:10.1177/18724981251332530
摘要

With the development of Internet of Things (IoT) technology, the current system has the problem of data processing delay, making it challenging to capture complex long-term dependencies and identify potential risks and failures in advance. This paper introduces the LSTM (Long Short-Term Memory) model in combination with the IoT, aiming to process time series data effectively, dynamically adjust warning thresholds, and predict potential risks. The real-time monitoring and early warning system for hydropower safety based on the IoT combines NB-IoT (Narrowband Internet of Things) technology and the LSTM model to achieve key parameter monitoring, data transmission, anomaly detection, and dynamic threshold adjustment. Sensors are deployed to cover important areas of the hydropower station, and LSTM captures long-term dependencies and predicts potential risks. After preprocessing, the data is transmitted through a lightweight protocol to ensure safety and accuracy. The early warning system integrates multiple modules, supports dynamic alarms and continuous optimization, and improves the safety and efficiency of hydropower station operations. Experimental results show that the LSTM model is superior to the comparison model in multiple indicators. In water level monitoring, the LSTM accuracy rate is as high as 98.50%, and the F1 score is 96.14%, significantly better than linear regression and decision trees. In gas concentration monitoring, the LSTM delay is only 70.8 ms, and the real-time rate is 99%. In the system stability assessment, the LSTM error rate was 1.8% under pressure monitoring, and the normal operation stability reached 99.6%, showing strong robustness and rapid recovery capabilities, suitable for scenarios with high real-time and high stability requirements. The real-time monitoring and early warning system for hydropower safety based on the IoT, combined with NB-IoT technology and LSTM model, can efficiently process complex time series data, adapt to high-load environments, and significantly improve the performance and reliability of the hydropower safety monitoring and early warning system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
8秒前
Lucas应助dwadwa采纳,获得10
26秒前
34秒前
dwadwa发布了新的文献求助10
37秒前
39秒前
老迟到的土豆完成签到 ,获得积分10
40秒前
量子星尘发布了新的文献求助10
46秒前
科研通AI5应助科研通管家采纳,获得10
57秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
量子星尘发布了新的文献求助10
1分钟前
ktw完成签到,获得积分10
1分钟前
JY完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
wodetaiyangLLL完成签到 ,获得积分10
2分钟前
沙海沉戈完成签到,获得积分0
2分钟前
量子星尘发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助30
3分钟前
地SDF完成签到,获得积分10
3分钟前
Yujian发布了新的文献求助100
3分钟前
量子星尘发布了新的文献求助10
3分钟前
丁丁完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
wanci应助lay_bc采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
雪茶完成签到 ,获得积分10
4分钟前
陌上之心完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
量子星尘发布了新的文献求助30
5分钟前
5分钟前
Shawn完成签到 ,获得积分10
5分钟前
lay_bc发布了新的文献求助10
5分钟前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
Structural Equation Modeling of Multiple Rater Data 700
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3885869
求助须知:如何正确求助?哪些是违规求助? 3427928
关于积分的说明 10757211
捐赠科研通 3152733
什么是DOI,文献DOI怎么找? 1740612
邀请新用户注册赠送积分活动 840305
科研通“疑难数据库(出版商)”最低求助积分说明 785313