Modeling Enzyme Reaction and Mutation by Direct Machine Learning/Molecular Mechanics Simulations

分子力学 分子动力学 计算机科学 化学 计算化学
作者
Xian-Yi Sha,Zhuo Chen,Daiqian Xie,Yanzi Zhou
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
标识
DOI:10.1021/acs.jctc.5c00149
摘要

Accurately modeling enzyme reactions through direct machine learning/molecular mechanics simulations remains challenging in describing the electrostatic coupling between the QM and MM subsystems. In this work, we proposed a reweighting ME (mechanic embedding) REANN (recursively embedded atom neural network) method that trains the potential and point charges of the QM subsystem in vacuo. The charge equilibration approach has been encoded into REANN to ensure conservation of the total charge of the QM subsystem. Electrostatic coupling is measured by point charges, and the polarization of the MM subsystem on the coupling can be corrected by thermodynamic perturbation after molecular dynamics simulations. We first constructed the REANN surfaces of potential energy and charges for the acylation of cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) by aspirin. These surfaces allowed us to reproduce the free energy curves of B3LYP/MM-MD with a chemical accuracy. Subsequently, they were successfully applied to R513A of COX-2, reproducing the free energy barrier simulated by B3LYP/MM MD with a difference of less than 0.5 kcal mol-1 and a speedup of 80-fold, revealing our method can predict the activity of mutants accurately and rapidly. This method is expected to be applied in virtual screening in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙廷宇关注了科研通微信公众号
刚刚
2秒前
失眠寒梦完成签到,获得积分20
4秒前
失眠寒梦发布了新的文献求助10
7秒前
Bblythe发布了新的文献求助10
7秒前
科研通AI5应助樂酉采纳,获得10
8秒前
范玉平完成签到,获得积分0
8秒前
11秒前
qiuxiaoting完成签到,获得积分10
11秒前
12秒前
13秒前
DaYongDan完成签到 ,获得积分10
13秒前
14秒前
15秒前
是小越啊发布了新的文献求助10
16秒前
18秒前
在水一方应助研友_ZAyqJZ采纳,获得10
19秒前
lala发布了新的文献求助10
19秒前
19秒前
19秒前
观妙散人完成签到,获得积分10
19秒前
科研通AI5应助Yi采纳,获得10
21秒前
osmanthus应助失眠寒梦采纳,获得10
21秒前
21秒前
22秒前
yuanletong完成签到 ,获得积分10
24秒前
跳跃小伙发布了新的文献求助10
24秒前
今后应助emnjkl采纳,获得10
27秒前
28秒前
肥陈发布了新的文献求助10
28秒前
Eifuly完成签到,获得积分10
28秒前
共享精神应助zhangzz采纳,获得10
28秒前
s_s完成签到 ,获得积分10
30秒前
123完成签到,获得积分10
30秒前
30秒前
澍澍完成签到,获得积分20
32秒前
33秒前
lala完成签到,获得积分10
35秒前
Yi发布了新的文献求助10
35秒前
Ava应助wowser采纳,获得10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776730
求助须知:如何正确求助?哪些是违规求助? 3322167
关于积分的说明 10208975
捐赠科研通 3037401
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797622
科研通“疑难数据库(出版商)”最低求助积分说明 757921