Electric-Double-Layer Mechanism of Surface Oxophilicity in Regulating the Alkaline Hydrogen Electrocatalytic Kinetics

化学 动力学 机制(生物学) 双层(生物学) 图层(电子) 无机化学 化学工程 有机化学 哲学 物理 认识论 量子力学 工程类
作者
Yaling Jiang,Peimeng Qiu,Qinghua Liu,Peng Li,Shengli Chen
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
被引量:3
标识
DOI:10.1021/jacs.4c14511
摘要

Regulating the surface oxophilicity of the electrocatalyst is known as an efficient strategy to mitigate the order-of-magnitude kinetic slowdown of hydrogen electrocatalysis in a base, which is of great scientific and technological significance. So far, its mechanistic origin remains mainly ascribed to the bifunctional or electronic effects that revolve around the catalyst-intermediate interactions and is under extensive debate. In addition, the understanding from the perspective of interfacial electric-double-layer (EDL) structures, which should also strongly depend on the electrode property, is still lacking. Here, by decorating a Pt electrode with Mo, Ru, Rh, and Au metal atoms to tune surface oxophilicity and systematically combining electrochemical activity tests, in situ surface-enhanced infrared absorption spectroscopy, density functional theory calculation, and ab initio molecular dynamics simulation, we found that there exist consistent volcano-type relationships between *OH adsorption strength and alkaline hydrogen evolution activity, the stretching/bending vibration information on interfacial water, and the potential of zero charge (PZC) of the electrode. This demonstrates that the origin of surface oxophilicity in impacting the alkaline hydrogen electrocatalytic activity lies in its modification toward the electrode PZC, which thereby dictates the electric field strength, rigidity, and hydrogen bonding network structure in EDL and ultimately governs the interfacial proton transfer kinetics. These findings emphasize the importance of focusing on electrocatalytic interface structures to understand electrode property-dependent reaction kinetics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪球完成签到,获得积分10
1秒前
wzh完成签到 ,获得积分10
6秒前
充电宝应助顺利冬易采纳,获得10
6秒前
duoduo完成签到,获得积分10
7秒前
cyndi完成签到,获得积分10
9秒前
神勇金毛完成签到,获得积分10
10秒前
姜子言完成签到,获得积分10
12秒前
13秒前
13秒前
VLH完成签到,获得积分10
17秒前
等待蚂蚁发布了新的文献求助10
17秒前
19秒前
Nothing应助顺利书翠采纳,获得10
20秒前
隐形曼青应助ruilong采纳,获得10
22秒前
等待蚂蚁完成签到,获得积分10
25秒前
HZQ应助紧张的小蘑菇采纳,获得10
30秒前
随梦而飞发布了新的文献求助20
36秒前
37秒前
Nothing应助顺利书翠采纳,获得10
38秒前
香蕉觅云应助adfadf采纳,获得10
38秒前
冷静的语梦完成签到,获得积分20
40秒前
花痴的手套完成签到 ,获得积分10
41秒前
42秒前
45秒前
平淡的懿轩完成签到,获得积分10
48秒前
50秒前
50秒前
51秒前
51秒前
爱科研的小多肉完成签到,获得积分10
52秒前
53秒前
方格子完成签到 ,获得积分10
53秒前
adfadf发布了新的文献求助10
55秒前
好久不见发布了新的文献求助10
55秒前
活泼莫英完成签到,获得积分10
56秒前
ruilong发布了新的文献求助10
57秒前
zcious完成签到,获得积分10
59秒前
耍酷的小土豆完成签到,获得积分10
1分钟前
好久不见完成签到,获得积分10
1分钟前
ssss应助冷静的语梦采纳,获得10
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Ene—X Compounds (X = S, Se, Te, N, P) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4128131
求助须知:如何正确求助?哪些是违规求助? 3665407
关于积分的说明 11597631
捐赠科研通 3364477
什么是DOI,文献DOI怎么找? 1848794
邀请新用户注册赠送积分活动 912609
科研通“疑难数据库(出版商)”最低求助积分说明 828134