纳米材料基催化剂
过电位
铂金
X射线吸收光谱法
材料科学
催化作用
电子结构
氢
纳米技术
纳米颗粒
化学
物理化学
吸收光谱法
计算化学
物理
有机化学
电化学
电极
量子力学
作者
Mi Luo,Bingbao Mei,Lin Huang,Haiyong Wang,Chenguang Wang
标识
DOI:10.1002/cssc.202500640
摘要
The rational construction of single‐atom‐mediated Pt catalysts with optimized electronic structures and robust stability remains a grand challenge for hydrogen evolution reaction (HER). Herein, we pioneer a spatial confinement coupled with a d‐band engineering strategy to fabricate cobalt single‐atom coordinated Pt nanocatalysts (Pt@Co‐SAs/NC), achieving exceptional HER activity with ultralow Pt loading (0.94 wt%). The Pt@Co‐SAs/NC exhibits an overpotential of 15 mV at 10 mA/cm2 (ƞ10) and 21.8‐fold enhanced mass activity at 20 mV versus commercial Pt/C, surpassing most reported Pt‐based systems. Synchrotron X‐ray absorption spectroscopy (XAS) and theoretical studies reveal that the atomically dispersed CoN4 sites adjacent to Pt NPs serve as electronic modulators, inducing a 0.36 eV downshift of the Pt d‐band center through interfacial charge redistribution. This electronic engineering weakens hydrogen adsorption strength (ΔGH* =‐0.17 eV) while accelerating H2 desorption kinetics. Furthermore, the CoN4‐anchored carbon matrix suppresses nanoparticle aggregation and ensures exceptional durability through strong metal‐support interactions, maintaining 94.2% activity after 130 h operation. This work establishes an atomic‐level electronic modulation paradigm for designing highly efficient, cost‐effective, and durable electrocatalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI