云计算
点(几何)
点云
计算机科学
数学
人工智能
几何学
操作系统
作者
Tao Zhang,Haobo Yuan,Qi Lu,Jiangning Zhang,Qianyu Zhou,Shunping Ji,Shuicheng Yan,Xiangtai Li
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence
[Association for the Advancement of Artificial Intelligence (AAAI)]
日期:2025-04-11
卷期号:39 (10): 10121-10130
被引量:4
标识
DOI:10.1609/aaai.v39i10.33098
摘要
Recently, state space models have exhibited strong global modeling capabilities and linear computational complexity in contrast to transformers. This research focuses on applying such architecture to more efficiently and effectively model point cloud data globally with linear computational complexity. In particular, for the first time, we demonstrate that Mamba-based point cloud methods can outperform previous methods based on transformer or multi-layer perceptrons (MLPs). To enable Mamba to process 3-D point cloud data more effectively, we propose a novel Consistent Traverse Serialization method to convert point clouds into 1-D point sequences while ensuring that neighboring points in the sequence are also spatially adjacent. Consistent Traverse Serialization yields six variants by permuting the order of x, y, and z coordinates, and the synergistic use of these variants aids Mamba in comprehensively observing point cloud data. Furthermore, to assist Mamba in handling point sequences with different orders more effectively, we introduce point prompts to inform Mamba of the sequence’s arrangement rules. Finally, we propose positional encoding based on spatial coordinate mapping to inject positional information into point cloud sequences more effectively. Point Cloud Mamba surpasses the state-of-the-art (SOTA) point-based method PointNeXt and achieves new SOTA performance on the ScanObjectNN, ModelNet40, ShapeNetPart, and S3DIS datasets. It is worth mentioning that when using a more powerful local feature extraction module, our PCM achieves 79.6 mIoU on S3DIS, significantly surpassing the previous SOTA models, DeLA and PTv3, by 5.5 mIoU and 4.9 mIoU, respectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI