作者
Jingjing Lv,Lu Li,Zilong Liang,Wenyue Wu,Na Zhang,Qinghua Jia
摘要
Herein, Elaeagnus angustifolia L. was utilized as a raw material to extract bound polyphenols using an ultrasound-assisted complex enzyme method for the first time. The effects of enzyme ratio, ultrasonic time, liquid-to-solid ratio, and pH value on the bound polyphenol yield were investigated using single-factor experiments. The key parameters were subsequently optimized using the Box-Behnken design. The optimal conditions identified were as follows: enzyme ratio (α-amylase/cellulase = 5:1 mg/mg), ultrasonic time of 50 min, liquid-to-solid ratio of 12:1 mL/g, and pH value of 5. Under these conditions, the bound polyphenol yield was measured at 13.970 ± 0.3 mg/g. A total of 27 phenolic compounds were identified using ultrahigh-performance liquid chromatography-ion mobility quadrupole time-of-flight mass spectrometry (UPLC-IMS-QTOF-MS), including two coumarins, five lignins, 10 polyphenols, nine flavonoids, and one tannin, and specifically containing Angeloylgomisin Q, Yakuchinone A, Furosin, 6-Dehydrogingerdione, and 4'-Methylpinosylvin, and so on. Antioxidant activity was assessed using the 1,1-diphenyl-2-picryl-hydrazil (DPPH) and 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonate) (ABTS) methods, revealing significant antioxidant potential. This study introduced a novel extraction process for bound polyphenols from E. angustifolia L. and provided the first qualitative analysis of bound polyphenols in this species, establishing a scientific foundation for its development and application in the functional food, medicine, and cosmetics industries.