Robust Dipolar Layers between Organic Semiconductors and Silver for Energy-Level Alignment

材料科学 工作职能 X射线光电子能谱 光电子学 有机半导体 半导体 光电发射光谱学 费米能级 扫描隧道显微镜 化学物理 密度泛函理论 纳米技术 图层(电子) 电子 化学工程 计算化学 化学 工程类 物理 量子力学
作者
Tomáš Krajňák,Veronika Stará,Pavel Procházka,Jakub Planer,Tomáš Škála,Matthias Blatnik,Jan Čechal
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (14): 18099-18111 被引量:1
标识
DOI:10.1021/acsami.3c18697
摘要

The interface between a metal electrode and an organic semiconductor (OS) layer has a defining role in the properties of the resulting device. To obtain the desired performance, interlayers are introduced to modify the adhesion and growth of OS and enhance the efficiency of charge transport through the interface. However, the employed interlayers face common challenges, including a lack of electric dipoles to tune the mutual position of energy levels, being too thick for efficient electronic transport, or being prone to intermixing with subsequently deposited OS layers. Here, we show that monolayers of 1,3,5-tris(4-carboxyphenyl)benzene (BTB) with fully deprotonated carboxyl groups on silver substrates form a compact layer resistant to intermixing while capable of mediating energy-level alignment and showing a large insensitivity to substrate termination. Employing a combination of surface-sensitive techniques, i.e., low-energy electron microscopy and diffraction, X-ray photoelectron spectroscopy, and scanning tunneling microscopy, we have comprehensively characterized the compact layer and proven its robustness against mixing with the subsequently deposited organic semiconductor layer. Density functional theory calculations show that the robustness arises from a strong interaction of carboxylate groups with the Ag surface, and thus, the BTB in the first layer is energetically favored. Synchrotron radiation photoelectron spectroscopy shows that this layer displays considerable electrical dipoles that can be utilized for work function engineering and electronic alignment of molecular frontier orbitals with respect to the substrate Fermi level. Our work thus provides a widely applicable molecular interlayer and general insights necessary for engineering of charge injection layers for efficient organic electronics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yjwang完成签到,获得积分10
1秒前
科研通AI5应助benben采纳,获得30
2秒前
量子星尘发布了新的文献求助10
6秒前
思源应助慕乐珍采纳,获得10
6秒前
魏子岩发布了新的文献求助10
6秒前
shaft发布了新的文献求助10
7秒前
敏感的鼠标完成签到 ,获得积分10
7秒前
7秒前
WHEN完成签到,获得积分10
7秒前
SWIM666完成签到,获得积分10
8秒前
8秒前
9秒前
wwwwnr完成签到,获得积分10
11秒前
11秒前
研友_VZG64n完成签到 ,获得积分10
13秒前
zx发布了新的文献求助10
13秒前
666完成签到 ,获得积分10
13秒前
14秒前
15秒前
羽雨发布了新的文献求助30
16秒前
xj完成签到,获得积分10
17秒前
仙女的小可爱完成签到 ,获得积分10
18秒前
DDL发布了新的文献求助20
20秒前
荔枝发布了新的文献求助30
20秒前
CipherSage应助@@采纳,获得10
21秒前
火星上向珊完成签到,获得积分20
22秒前
一烟尘发布了新的文献求助10
22秒前
22秒前
123jopop完成签到,获得积分10
22秒前
Akim应助deswin采纳,获得10
24秒前
24秒前
25秒前
量子星尘发布了新的文献求助10
27秒前
杨。。完成签到 ,获得积分10
27秒前
动听的荧完成签到,获得积分20
28秒前
catch发布了新的文献求助10
29秒前
29秒前
陈十八发布了新的文献求助10
29秒前
无限百川完成签到,获得积分10
31秒前
共享精神应助呼呼兔采纳,获得10
31秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
New Essays on Normative Realism 600
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4218177
求助须知:如何正确求助?哪些是违规求助? 3752088
关于积分的说明 11798322
捐赠科研通 3416784
什么是DOI,文献DOI怎么找? 1875171
邀请新用户注册赠送积分活动 928984
科研通“疑难数据库(出版商)”最低求助积分说明 837885