Deep Gaussian Scale Mixture Prior for Image Reconstruction

人工智能 计算机科学 深度学习 先验概率 迭代重建 模式识别(心理学) 计算机视觉 图像复原 高斯分布 降噪 图像(数学) 图像处理 贝叶斯概率 物理 量子力学
作者
Tao Huang,Xin Yuan,Weisheng Dong,Jinjian Wu,Guangming Shi
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (9): 10778-10794 被引量:7
标识
DOI:10.1109/tpami.2023.3265103
摘要

Image reconstruction from partial observations has attracted increasing attention. Conventional image reconstruction methods with hand-crafted priors often fail to recover fine image details due to the poor representation capability of the hand-crafted priors. Deep learning methods attack this problem by directly learning mapping functions between the observations and the targeted images can achieve much better results. However, most powerful deep networks lack transparency and are nontrivial to design heuristically. This paper proposes a novel image reconstruction method based on the Maximum a Posterior (MAP) estimation framework using learned Gaussian Scale Mixture (GSM) prior. Unlike existing unfolding methods that only estimate the image means (i.e., the denoising prior) but neglected the variances, we propose characterizing images by the GSM models with learned means and variances through a deep network. Furthermore, to learn the long-range dependencies of images, we develop an enhanced variant based on the Swin Transformer for learning GSM models. All parameters of the MAP estimator and the deep network are jointly optimized through end-to-end training. Extensive simulation and real data experimental results on spectral compressive imaging and image super-resolution demonstrate that the proposed method outperforms existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助ll采纳,获得30
2秒前
luonayi发布了新的文献求助10
5秒前
6秒前
7秒前
9秒前
luonayi完成签到,获得积分10
9秒前
Jozee完成签到,获得积分10
10秒前
夏伊发布了新的文献求助10
10秒前
ding应助Caesar采纳,获得10
11秒前
ll发布了新的文献求助30
12秒前
12秒前
CipherSage应助布丁采纳,获得10
12秒前
eleusis完成签到 ,获得积分10
12秒前
喜羊羊完成签到,获得积分10
12秒前
安静凡旋发布了新的文献求助10
14秒前
Jozee发布了新的文献求助10
15秒前
17秒前
大模型应助遗梦梦采纳,获得10
21秒前
爱的纠缠发布了新的文献求助20
24秒前
25秒前
25秒前
sjxbjrndkd完成签到 ,获得积分10
26秒前
franca2005完成签到,获得积分10
26秒前
youjiwuji发布了新的文献求助10
28秒前
科研通AI5应助寻风采纳,获得10
31秒前
32秒前
33秒前
XXH完成签到 ,获得积分10
33秒前
ding应助franca2005采纳,获得10
34秒前
37秒前
银河发布了新的文献求助10
37秒前
充电宝应助huanhuan采纳,获得10
37秒前
鳗鱼涵梅发布了新的文献求助10
38秒前
38秒前
Lucas应助聪明含桃采纳,获得10
39秒前
jjj发布了新的文献求助10
41秒前
yun完成签到,获得积分10
43秒前
完美世界发布了新的文献求助10
43秒前
李健的粉丝团团长应助ymy采纳,获得10
43秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800230
求助须知:如何正确求助?哪些是违规求助? 3345547
关于积分的说明 10325664
捐赠科研通 3061960
什么是DOI,文献DOI怎么找? 1680707
邀请新用户注册赠送积分活动 807182
科研通“疑难数据库(出版商)”最低求助积分说明 763547