清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Edge-Computing-Facilitated Nighttime Vehicle Detection Investigations With CLAHE-Enhanced Images

计算机科学 计算机视觉 边缘检测 人工智能 自适应直方图均衡化 GSM演进的增强数据速率 图像处理 图像(数学) 直方图均衡化
作者
Igor Lashkov,Runze Yuan,Guohui Zhang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (11): 13370-13383 被引量:14
标识
DOI:10.1109/tits.2023.3255202
摘要

In this study, we propose a novel CLAHE-based nighttime image contrast enhancement approach for vehicle detection under nighttime conditions, which improves the contrast of low-quality nighttime images while preventing over-enhancement by employing the image dehazing technique. To implement and evaluate our proposed contrast enhancement method on nighttime images, we consider a scenario of using a camera-based Internet of Things (IoT)-edge computing device for traffic and road surveillance. Edge-computing and IoT technology enable significant amounts of novel studies to advance traffic system monitoring, sensing, control, and management. Considering multiple metrics of image enhancement quality, the proposed nighttime image contrast enhancement method outperforms some existing well-performing CLAHE-based methods. To provide accurate vehicle detection under nighttime conditions and different challenges, including vehicle overlapping, low-light conditions, camera vibrations, and image distortion, must be addressed. For this purpose, a deep neural network based on YOLOv5 architecture has been designed and trained using our custom-labeled dataset. The developed neural network is proven to be effective in the detection of different vehicles under low-light ambient conditions using video captured from a stationary camera. Experiments on our dataset show that the proposed contrast enhancement method greatly improves the detection performance of the trained YOLOv5 model under low-environment-light conditions compared with the model trained using unenhanced images. The model trained with enhanced images can provide an improvement of 5.7% on F1 score, 6.3% on mAP0.5, and 3.4% on mAP0.5:0.95 under specific conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
元神完成签到 ,获得积分10
8秒前
爆米花应助HD采纳,获得10
9秒前
玛琳卡迪马完成签到,获得积分10
10秒前
热心的十二完成签到 ,获得积分10
18秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
Akim应助科研通管家采纳,获得10
21秒前
23秒前
25秒前
25秒前
尹妮妮发布了新的文献求助10
27秒前
zww发布了新的文献求助10
32秒前
伯爵完成签到 ,获得积分10
33秒前
重要手机完成签到 ,获得积分10
36秒前
36秒前
婉莹完成签到 ,获得积分0
39秒前
zww完成签到,获得积分10
40秒前
iwsaml完成签到 ,获得积分10
2分钟前
浮生若梦完成签到 ,获得积分10
2分钟前
xiaoruixue完成签到,获得积分10
2分钟前
尹妮妮发布了新的文献求助10
3分钟前
尹妮妮完成签到,获得积分10
3分钟前
偏偏海完成签到,获得积分10
3分钟前
徐团伟完成签到 ,获得积分10
3分钟前
ran完成签到 ,获得积分10
4分钟前
浪麻麻完成签到 ,获得积分10
4分钟前
故意的怜晴完成签到 ,获得积分10
4分钟前
小西完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
jiayoujijin完成签到 ,获得积分10
4分钟前
HD发布了新的文献求助10
4分钟前
滕皓轩完成签到 ,获得积分20
5分钟前
852应助科研通管家采纳,获得10
6分钟前
碗碗豆喵完成签到 ,获得积分10
6分钟前
fangyifang完成签到,获得积分10
6分钟前
六一完成签到 ,获得积分10
6分钟前
pluto应助龙卷风采纳,获得10
7分钟前
西柚柠檬完成签到 ,获得积分10
7分钟前
theo完成签到 ,获得积分10
7分钟前
7分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3937852
求助须知:如何正确求助?哪些是违规求助? 3483296
关于积分的说明 11022780
捐赠科研通 3213285
什么是DOI,文献DOI怎么找? 1776135
邀请新用户注册赠送积分活动 862325
科研通“疑难数据库(出版商)”最低求助积分说明 798429