Manipulation of the LiZn Alloy Process toward High-Efficiency Lithium Metal Anodes

材料科学 锂(药物) 阳极 合金 剥离(纤维) 成核 基质(水族馆) 电化学 金属锂 化学工程 金属 电镀(地质) 纳米技术 冶金 电极 复合材料 有机化学 物理化学 化学 内分泌学 工程类 地质学 海洋学 医学 地球物理学
作者
Rui Hua Jiao,Yanfei Li,Guo-Duo Yang,Wen-Chen Wang,Lei Ding,Jian Lin,Yi‐Han Song,Jiayu Zhang,Xing‐Long Wu,Jingping Zhang,Mingxiao Deng,Haizhu Sun
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (21): 25615-25623 被引量:1
标识
DOI:10.1021/acsami.3c04229
摘要

Synthesis of alloy-type materials (X) is one of the most effective approaches to limit lithium dendrites in Li metal anode (LMA) because of their satisfactory lithiophilicity and easy electrochemical reaction with lithium. However, current investigations have only focused on the influence of the resulting alloyed products (LiX) on the properties of LMA, but the alloying reaction process between Li+ and X has been mostly ignored. Herein, by masterly taking advantage of the alloying reaction process, a novel approach is developed to more effectively inhibit lithium dendrites than the conventional strategy that just considers the utilization of alloyed products LiX. A three-dimensional substrate material loaded with metallic Zn on the surface of Cu foam is synthesized by a simple electrodeposition process. During Li plating/stripping, both alloy reaction processes between Li+ and Zn and LiZn product are involved, which makes the disordered Li+ flux near the substrate first react with Zn metal and then results in an even Li+ concentration for more uniform Li nucleation and growth. The full cell (Li-Cu@Zn-15//LFP) exhibits the reversible capacity of 122.5 mAh g-1, and a high capacity retention of 95% is achieved after 180 cycles. This work proposes a valuable concept for the development of alloy-type materials in energy storage devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hester完成签到,获得积分10
1秒前
瑞瑞完成签到,获得积分10
1秒前
1秒前
轻松的绝悟完成签到,获得积分10
1秒前
roclie发布了新的文献求助10
3秒前
3秒前
小二郎应助ff采纳,获得10
3秒前
Akim应助charles采纳,获得10
5秒前
辛勤的孤容完成签到,获得积分10
6秒前
6秒前
二牛完成签到,获得积分10
6秒前
柯青完成签到 ,获得积分10
7秒前
科研小肖完成签到,获得积分10
8秒前
kid1412029发布了新的文献求助10
9秒前
李志敏发布了新的文献求助10
9秒前
Littlerain~完成签到,获得积分10
10秒前
11秒前
WYM发布了新的文献求助10
13秒前
jiner发布了新的文献求助10
13秒前
15秒前
华仔应助18001175316采纳,获得10
15秒前
17秒前
霖昭完成签到,获得积分10
17秒前
刘昌虎发布了新的文献求助10
18秒前
霖昭发布了新的文献求助10
19秒前
19秒前
esther完成签到,获得积分10
21秒前
面向杂志编论文应助hhh采纳,获得10
22秒前
陈荣完成签到,获得积分10
23秒前
23秒前
learning小童鞋完成签到,获得积分10
23秒前
赘婿应助AptRank采纳,获得10
23秒前
脑洞疼应助刘昌虎采纳,获得10
25秒前
wjq95714应助囧囧采纳,获得150
26秒前
霸气的采文完成签到,获得积分10
26秒前
Orange应助高大的黎昕采纳,获得20
29秒前
慕青应助slr采纳,获得10
29秒前
汉堡包应助墨染清风凉采纳,获得10
30秒前
31秒前
kid1412029完成签到,获得积分10
31秒前
高分求助中
Teaching Social and Emotional Learning in Physical Education 1000
Essentials of thematic analysis 800
ANDA Litigation: Strategies and Tactics for Pharmaceutical Patent Litigators Second 版本 500
Exact Solutions of the Discrete Heat Conduction Equations 500
A labyrinthodont from the Lower Gondwana of Kashmir and a new edestid from the Permian of the Salt Range 500
中国志愿服务发展报告(2022~2023) 300
The Commercialization of Pharmaceutical Patents in China (Asian Commercial, Financial and Economic Law and Policy series) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2331798
求助须知:如何正确求助?哪些是违规求助? 2015845
关于积分的说明 5050869
捐赠科研通 1769751
什么是DOI,文献DOI怎么找? 886387
版权声明 555529
科研通“疑难数据库(出版商)”最低求助积分说明 471942