An initially robust minimum simplex volume-based method for linear hyperspectral unmixing

初始化 稳健性(进化) 计算机科学 端元 高光谱成像 稳健优化 数学优化 算法 人工智能 数学 生物化学 化学 基因 程序设计语言
作者
Yanyan Li,Tao Tan
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:45 (4): 1033-1058 被引量:1
标识
DOI:10.1080/01431161.2024.2305628
摘要

Initialization plays an important role in the accuracy of endmember extraction algorithms (EEAs) in linear hyperspectral unmixing (LHU). Random initialization can lead to varying endmembers generated by EEAs. To address this challenge, an initialization strategy has been introduced, encompassing vertex component analysis (VCA), automatic target generation process (ATGP), among others. These techniques significantly contribute to enhancing the accuracy of EEAs. However, complex initialization is sometimes less preferable, prompting the unexplored question of whether there exists an EEA robust to initialization. This paper focuses on analyzing this issue within the context of minimum simplex volume-based (MV) methods, which have received considerable attention in the past two decades due to their robustness against the absence of pure pixels. MV methods typically formulate LHU as an optimization problem, most of which includes a non-convex volume term. Additionally, many MV methods use VCA as an initialization strategy. Firstly, this paper demonstrates that the variable splitting augmented Lagrangian approach (SISAL), as a representative non-convex MV method, heavily depends on initialization. To our knowledge, the impact of initialization for MV methods has not been thoroughly analyzed before. Furthermore, this paper proposes an initially robust MV method by introducing a new convex MV term. Numerical experiments conducted on simulated and real datasets demonstrate its outstanding performance in accuracy and robustness to initialization. Throughout the experiments the proposed method proves to be the most stable, which is crucial in real scene where the ground truth is unknown beforehand.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺利涵菡完成签到,获得积分10
刚刚
刚刚
刚刚
不会飞的笨笨子完成签到,获得积分10
1秒前
1秒前
1秒前
淡定跳跳糖完成签到,获得积分10
2秒前
库才义发布了新的文献求助10
2秒前
科研通AI5应助轻松博超采纳,获得10
3秒前
白云发布了新的文献求助10
3秒前
养叶子完成签到,获得积分10
3秒前
CodeCraft应助Micheallee采纳,获得10
3秒前
4秒前
好运连连发布了新的文献求助10
4秒前
ww发布了新的文献求助10
4秒前
SciGPT应助张菁采纳,获得10
5秒前
不安的乞发布了新的文献求助10
6秒前
Wendy完成签到,获得积分10
6秒前
6秒前
hongcha完成签到,获得积分10
6秒前
无语的梦菲完成签到,获得积分10
7秒前
西门子云完成签到,获得积分10
7秒前
llm发布了新的文献求助30
7秒前
totoro完成签到,获得积分10
7秒前
饕餮钰钰发布了新的文献求助10
8秒前
cat完成签到,获得积分10
9秒前
realize1106发布了新的文献求助10
9秒前
孤独的珩完成签到,获得积分10
9秒前
YingxueRen完成签到,获得积分10
9秒前
9秒前
Anna发布了新的文献求助10
10秒前
11秒前
haihuhu完成签到 ,获得积分10
11秒前
11秒前
研友_VZG7GZ应助suyi采纳,获得10
12秒前
科目三应助小卫采纳,获得10
12秒前
13秒前
猫儿烟烟完成签到,获得积分10
13秒前
今后应助无语的梦菲采纳,获得10
13秒前
MiriamYu完成签到,获得积分10
14秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Treatise on Ocular Drug Delivery 200
studies in large plastic flow and fructure 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834665
求助须知:如何正确求助?哪些是违规求助? 3377161
关于积分的说明 10496785
捐赠科研通 3096583
什么是DOI,文献DOI怎么找? 1705068
邀请新用户注册赠送积分活动 820438
科研通“疑难数据库(出版商)”最低求助积分说明 772031