Deep Evidential Remote Sensing Landslide Image Classification With a New Divergence, Multiscale Saliency and an Improved Three-Branched Fusion

可解释性 计算机科学 人工智能 深度学习 图像融合 登普斯特-沙弗理论 上下文图像分类 深层神经网络 图像(数学) 人工神经网络 山崩 频道(广播) 机器学习 模式识别(心理学) 地质学 岩土工程 计算机网络
作者
Jiaxu Zhang,Qi Cui,Xiaojian Ma
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 3799-3820 被引量:4
标识
DOI:10.1109/jstars.2024.3354455
摘要

Hitherto, image-level classification on remote sensing landslide images has been paid attention to, but the accuracy of traditional deep learning-based methods still have room for improvement. The evidence theory is found efficient to boost the accuracy of neural networks, however, the present study argues three challenges that hinder the lead-in of this theory in deep landslide image classification. Aiming at the three problems, this study makes three improvements. For the interpretability and decision-invariance losses of three previous divergences, we propose a Belief Jensen-Renyi divergence with properties proven. To couple the evidence theory with deep remote sensing landslide image classification, a channel-wise multi-scale visual saliency fusion is developed. We additionally find that the channel-wise fusion is capable to reduce false recognition of networks as compared with original RGB images. To avoid decision failures in evidence-theoretic fusion process, we design an interpretability improved three-branched fusion. Experiments on Bijie Landslide dataset corroborate the synergistic benefits of the three improvements, where the proposal is compared with state-of-the-art image classification backbone networks, remote sensing image scene classifiers, evidence fusion algorithms and versatile evidence-theoretic deep learning classifiers. We also evaluated the new method with two sort of image degradation, as well as an actual scenario in Luding County, China whose data is publicly available. The source code is at https://github.com/defzhangaa/deeplandslideDS .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
雪风完成签到 ,获得积分10
2秒前
kk99123应助zkqzzz采纳,获得10
4秒前
5秒前
情怀应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
所所应助科研通管家采纳,获得10
6秒前
6秒前
樱桃发布了新的文献求助30
6秒前
7秒前
8秒前
8秒前
拼搏诗翠完成签到 ,获得积分10
9秒前
翟zhai发布了新的文献求助10
10秒前
落寞剑成发布了新的文献求助10
11秒前
11秒前
袁钰琳完成签到 ,获得积分10
13秒前
李健应助shang采纳,获得10
14秒前
Jarvis应助碧蓝怜梦采纳,获得10
14秒前
16秒前
17秒前
Wow发布了新的文献求助10
18秒前
21秒前
英俊的铭应助称心一斩采纳,获得10
24秒前
科研通AI5应助樊小胖采纳,获得10
24秒前
26秒前
29秒前
29秒前
xingmoumou应助wzx采纳,获得10
29秒前
31秒前
坚强的又莲完成签到 ,获得积分10
31秒前
熊巴巴完成签到 ,获得积分10
32秒前
哦哦发布了新的文献求助10
32秒前
zz完成签到,获得积分10
32秒前
赘婿应助干炸小黄鱼采纳,获得10
32秒前
shy发布了新的文献求助10
33秒前
33秒前
感性的若云完成签到,获得积分10
33秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Eco-Friendly Skin Solutions for Natural Cosmeceuticals 500
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4084017
求助须知:如何正确求助?哪些是违规求助? 3623089
关于积分的说明 11493667
捐赠科研通 3337726
什么是DOI,文献DOI怎么找? 1834963
邀请新用户注册赠送积分活动 903617
科研通“疑难数据库(出版商)”最低求助积分说明 821761