Advanced Electrolytes for Rechargeable Lithium Metal Batteries with High Safety and Cycling Stability

金属锂 阳极 电池(电) 电解质 锂(药物) 材料科学 快离子导体 易燃液体 阴极 纳米技术 储能 可燃性 工艺工程 废物管理 电极 复合材料 化学 电气工程 工程类 医学 量子力学 物理 功率(物理) 内分泌学 物理化学
作者
Yuli Huang,Bowei Cao,Zhen Geng,Hong Li
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:5 (2): 184-193 被引量:11
标识
DOI:10.1021/accountsmr.3c00232
摘要

ConspectusWith the rapid development of advanced energy storage equipment, particularly lithium-ion batteries (LIBs), there is a growing demand for enhanced battery energy density across various fields. Consequently, an increasing number of high-specific-capacity cathode and anode materials are being rapidly developed. Concurrently, challenges pertaining to insufficient battery safety and stability arising from liquid electrolytes (LEs) with flammability persistently emerge. LEs possess the advantages of exceptional ionic conductivity and can operate within a broader temperature range. After two decades of continuous development in commercial applications, it currently stands as the most widely employed electrolyte material in lithium-ion batteries. However, the existing LE primarily consists of a carbonate electrolyte with a low flash point, low boiling point, and flammable and volatile nature, thereby rendering fire and explosion risks inevitable. Compared with LEs, solid-state electrolytes (SSEs) exhibit relatively good flame retardancy and possess the potential to inhibit lithium dendrite formation, and they are regarded as promising electrolyte materials. Nevertheless, numerous challenges of SSEs still need to be addressed at this stage. The inadequate solid–solid contact between the solid electrolyte and the electrode material, as well as the insufficient contact stability, significantly impact the cycling stability of solid-state batteries. Furthermore, unlike liquid electrolytes, the solid electrolyte lacks fluidity and cannot effectively penetrate the pores of porous electrodes, necessitating additional cathode design considerations. The incompatibility with existing liquid battery production processes and high cost further impede the advancement of solid-state batteries. In response to the challenges associated with solid-state batteries, recent research has introduced in situ solidification solutions. By transformation of the liquid into a solid electrolyte within the battery, this method facilitates excellent interfacial contact between the electrolyte and electrode material while ensuring compatibility with existing production equipment. Consequently, these advantages have propelled in situ solidification to become a prominent research methodology for solid-state batteries. Currently, electrolyte research is undergoing a transitional period from liquid to solid-state, accompanying the emergence of numerous hybrid solid–liquid electrolytes (HSLEs). HSLEs not only exhibit the high ionic conductivity characteristic of liquid electrolytes but also enhance battery safety and stability to a certain extent. HSLEs are found in various forms, including hybrid systems comprising inorganic solid electrolytes and LEs, as well as gel systems consisting of polymer electrolytes and LEs. Additionally, there are in situ solidification technologies that enable the gel electrolyte to be formed internally within the battery. This concept introduces the development status of electrolytes with improved safety and stability from the perspectives of LEs, SSEs, and HSLEs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wowser完成签到,获得积分10
刚刚
FashionBoy应助chanhow采纳,获得10
1秒前
wowser发布了新的文献求助10
4秒前
5秒前
heiniu完成签到,获得积分10
6秒前
ning_qing完成签到 ,获得积分10
6秒前
liukang172完成签到,获得积分10
7秒前
李健应助贤惠的早晨采纳,获得10
9秒前
keplek完成签到 ,获得积分10
9秒前
10秒前
思源应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
雨水完成签到,获得积分10
11秒前
颿曦发布了新的文献求助10
11秒前
fbwg发布了新的文献求助10
13秒前
怕孤单的芷云完成签到,获得积分20
14秒前
14秒前
简单的易云完成签到,获得积分10
18秒前
世间安得双全法完成签到,获得积分0
18秒前
立军发布了新的文献求助10
19秒前
chanhow完成签到,获得积分10
20秒前
22秒前
NexusExplorer应助yangyj采纳,获得10
22秒前
chen完成签到 ,获得积分10
22秒前
夜捕白日梦完成签到,获得积分10
26秒前
26秒前
缥缈纲完成签到,获得积分10
27秒前
chanhow发布了新的文献求助10
27秒前
27秒前
haprier完成签到 ,获得积分10
28秒前
认真丹亦完成签到 ,获得积分10
28秒前
加一点荒谬完成签到,获得积分10
29秒前
背后昊焱发布了新的文献求助10
32秒前
短巷完成签到 ,获得积分10
32秒前
weijie完成签到,获得积分10
42秒前
科研通AI5应助立军采纳,获得10
44秒前
淡然冬灵发布了新的文献求助30
46秒前
Yang22完成签到,获得积分10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780920
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10226967
捐赠科研通 3041589
什么是DOI,文献DOI怎么找? 1669510
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734