A Novel Center-Boundary Metric Loss to Learn Discriminative Features for Hyperspectral Image Classification

判别式 模式识别(心理学) 人工智能 公制(单位) 嵌入 特征(语言学) 特征向量 计算机科学 相似性(几何) 水准点(测量) 边界(拓扑) 高光谱成像 样品(材料) 上下文图像分类 特征提取 数学 图像(数学) 数学分析 运营管理 化学 经济 语言学 哲学 大地测量学 色谱法 地理
作者
Shaohui Mei,Zonghao Han,Mingyang Ma,Fulin Xu,Xingang Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16 被引量:14
标识
DOI:10.1109/tgrs.2024.3362391
摘要

Learning discriminative features is of crucial for hyperspectral image (HSI) classification. Though metric learning has been applied to learn effective features in HSI classification tasks, existing metric loss functions only consider distance among features of sample pairs but ignore the feature centers and boundaries in the embedding feature space, which limits the discrimination of learned features. In this paper, a novel metric loss function named center-boundary metric loss (CBML) is proposed to learn more discriminative features so as to improve HSI classification performance. Unlike the existing metric loss functions, CBML not only considers the distance between sample pairs to enhance intra-class similarity and inter-class separability but also pays more attention to the feature centers and boundaries in the embedding feature space that could greatly determine and affect the category of features. Specifically, CBML forces the distance of a sample to its corresponding feature center to be explicitly smaller than that to samples from other classes by a predefined threshold. As a result, the boundaries of different classes will separate an actual distance, which improves the discrimination of learned features. Moreover, in order to improve the training efficiency, a cross mini-batch sampling strategy is further proposed to break through the limitation within the mini-batch by using features between several contiguous mini-batches to sample pairs without increasing the size of the mini-batch. Accordingly, the sampling range of sample pairs is greatly expanded, and the training data is more fully exploited. Experimental results over four benchmark datasets with a typical network for HSI classification demonstrate our proposed method outperforms several state-of-the-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
来了来了完成签到 ,获得积分10
1秒前
DY完成签到,获得积分10
2秒前
xzx完成签到 ,获得积分10
5秒前
你在教我做事啊完成签到 ,获得积分10
5秒前
tivyg'lk完成签到,获得积分10
5秒前
DianaLee完成签到 ,获得积分10
6秒前
eee应助读行千万采纳,获得30
7秒前
coolplex完成签到 ,获得积分10
9秒前
maxthon完成签到,获得积分10
9秒前
Silence完成签到,获得积分0
11秒前
rudjs完成签到,获得积分10
11秒前
12秒前
Henry完成签到,获得积分10
13秒前
liciky完成签到 ,获得积分10
15秒前
17秒前
读行千万完成签到,获得积分20
19秒前
小猪完成签到,获得积分10
19秒前
nusiew完成签到,获得积分10
19秒前
霍霍完成签到 ,获得积分10
22秒前
spp完成签到 ,获得积分0
23秒前
hbhbj完成签到,获得积分10
24秒前
nicky完成签到 ,获得积分10
24秒前
u2u2完成签到 ,获得积分10
25秒前
淡然思卉完成签到,获得积分10
30秒前
32秒前
John完成签到 ,获得积分10
33秒前
Sprinkle发布了新的文献求助10
38秒前
46秒前
Slemon完成签到,获得积分10
46秒前
47秒前
云宇发布了新的文献求助20
48秒前
GSQ发布了新的文献求助10
52秒前
Breeze完成签到 ,获得积分10
54秒前
佳思思完成签到,获得积分10
55秒前
xliang233完成签到 ,获得积分10
57秒前
随便完成签到 ,获得积分10
58秒前
tomorrow完成签到 ,获得积分10
1分钟前
CipherSage应助一个小胖子采纳,获得10
1分钟前
GSQ完成签到,获得积分10
1分钟前
doclarrin完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776037
求助须知:如何正确求助?哪些是违规求助? 3321607
关于积分的说明 10206346
捐赠科研通 3036673
什么是DOI,文献DOI怎么找? 1666435
邀请新用户注册赠送积分活动 797439
科研通“疑难数据库(出版商)”最低求助积分说明 757839