Enabling layer transfer and back-side power delivery network applications by wafer bonding and scanner correction optimizations

薄脆饼 材料科学 晶体管 晶片键合 光电子学 绝缘体上的硅 图层(电子) 混合硅激光器 基质(水族馆) 半导体 纳米技术 电气工程 计算机科学 电子工程 工程类 地质学 电压 海洋学
作者
Richard J. F. van Haren,Suwen Li,Blandine Minghetti,Leon van Dijk,Klaas Brantjes,Frank Fournel,Gaëlle Mauguen,Ivanie Mendes,C. Lapeyre,Marie-Line Pourteau,Michael May,Laurent Pain,Karine Abadie,Thomas Plach,Markus Wimplinger
标识
DOI:10.1117/12.2657422
摘要

Apart from the ever-continuing lateral scaling in the xy-plane to increase the transistor density, additional new concepts find their way to the semiconductor industry too. These concepts are based on making more use of the third dimension. One relatively simple idea would be to create a second layer of transistors to double the transistor density. However, the material requirements are high and the quality of the layer deposition by conventional Chemical Vapor Deposition (CVD) techniques is insufficient. Another application to free up real estate, enabling a smaller cell size and hence an increased transistor density, is to power-up the transistors from the backside. The power rails for logic devices are historically defined in the first Metal layer and consume quite some space. Bringing the power rails to the backside will free up space. However, access to the transistor layer from the backside of the wafer is far from trivial due to the presence of a 775-μm thick silicon substrate. The answer to the challenges mentioned above is wafer-to-wafer direct bonding. Although this technique is not new and already widely used in the semiconductor industry to manufacture CMOS Image Sensors (CIS), it currently finds its way to the high-end logic markets. In case of layer transfer, a crystalline silicon layer is created by bonding a Silicon-On- Insulator (SOI) wafer to the already existing device wafer. After the bonding step, the substrate of the SOI wafer will be removed leaving the crystalline silicon layer behind. Access to the transistor layer from the wafer backside can be enabled by wafer-to-wafer bonding as well. To this end, a completed device wafer will be bonded to an (un-patterned) carrier wafer. The substrate of the original device wafer will be removed, enabling access from the backside. Wafer-towafer bonding applications can only be enabled in case the induced wafer deformations are low or when they can easily be corrected during the subsequent exposures on the scanner. At CEA-Leti, a dedicated test vehicle process flow has been developed to characterize the wafer bonding-induced distortion fingerprints for both the layer transfer and the backside power delivery network applications. The wafer process flow has been simplified without losing the industry relevant on-product overlay challenges. Wafers have been created to enable an extremely dense characterization of the wafer bonding induced fingerprint. The methodology we applied enables us to isolate the wafer bonding induced distortion fingerprint, something that is difficult to do in a production environment. The Back-Side Power Delivery Network (BS-PDN) application is the most challenging one. The initial raw measured wafer distortion fingerprints are around 60 to 80-nm. These numbers can already be easily brought down by scanner corrections to ~15-nm (mean+3σ) without too much effort. However, these numbers are too large for the 2-nm technology node and beyond, and further improvement is required. The goal of this paper is to present the path forward to bring the bonding induced wafer distortion levels to 10-nm and below. We show the capability of the latest and greatest EVG bonding tool hardware and recipe settings available at the time of running the experiments in combination with the correction capability an ASML 0.33NA scanner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈爽er发布了新的文献求助10
刚刚
Ricky发布了新的文献求助10
1秒前
爆米花应助Solitude_Z采纳,获得10
1秒前
1秒前
1秒前
Sakura完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
儒雅发布了新的文献求助10
3秒前
名字完成签到,获得积分10
4秒前
凡F完成签到 ,获得积分10
4秒前
like1994完成签到,获得积分10
4秒前
牛马正在写文章完成签到,获得积分10
5秒前
Orange应助阳光的大侠采纳,获得10
5秒前
wanghao婷发布了新的文献求助10
5秒前
wweiyyulling完成签到,获得积分10
6秒前
yungu发布了新的文献求助30
6秒前
NexusExplorer应助少冬瓜采纳,获得10
7秒前
8秒前
唐泽雪穗应助幽默贞采纳,获得10
10秒前
pingpinglver完成签到 ,获得积分10
11秒前
12秒前
Ricky完成签到,获得积分10
12秒前
小蘑菇应助wanghao婷采纳,获得10
12秒前
13秒前
Ade发布了新的文献求助10
14秒前
略略完成签到,获得积分10
14秒前
xqf123完成签到,获得积分10
14秒前
28316818@qq.com完成签到,获得积分10
15秒前
梦蝶发布了新的文献求助10
15秒前
16秒前
科研通AI6应助陈爽er采纳,获得10
16秒前
xianyu完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助30
17秒前
18秒前
eily完成签到,获得积分10
19秒前
Mq完成签到,获得积分10
20秒前
和谐的石头完成签到,获得积分20
21秒前
杨淇升发布了新的文献求助10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073428
求助须知:如何正确求助?哪些是违规求助? 4293518
关于积分的说明 13378782
捐赠科研通 4114951
什么是DOI,文献DOI怎么找? 2253260
邀请新用户注册赠送积分活动 1258050
关于科研通互助平台的介绍 1190911