已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Q-learning-based unmanned aerial vehicle path planning with dynamic obstacle avoidance

避障 运动规划 计算机科学 障碍物 路径(计算) 任意角度路径规划 Dijkstra算法 最短路径问题 强化学习 人工智能 快速通道 避碰 图形 实时计算 数学优化 移动机器人 机器人 理论计算机科学 数学 碰撞 计算机网络 计算机安全 政治学 法学
作者
Amala Sonny,Sreenivasa Reddy Yeduri,Linga Reddy Cenkeramaddi
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:147: 110773-110773 被引量:63
标识
DOI:10.1016/j.asoc.2023.110773
摘要

Recently, unmanned aerial vehicles (UAVs) have shown promising results for autonomous sensing. UAVs have been deployed for multiple applications that include surveillance, mapping, tracking, and search operations. Finding an efficient path between a source and a goal is a critical issue that has been the focus of recent exploration. Many path-planning algorithms are utilized to find an efficient path for a UAV to navigate from a source to a goal with obstacle avoidance. Despite the extensive literature and numerous research proposals for path planning, dynamic obstacle avoidance has not been addressed with machine learning. When the obstacles are dynamic, i.e., they can change their position over time, and the constraints of the path planning algorithm become more challenging. This in turn adds a layer of complexity to the path planning algorithm. To address this challenge, a Q-learning algorithm is proposed in this work to facilitate efficient path planning for UAVs with both static and dynamic obstacle avoidance. We introduced the Shortest Distance Prioritization policy in the learning process which marginally reduces the distance that the UAV has to travel to reach the goal. Further, the proposed Q-learning algorithm adopts a grid-graph-based method to solve the path-planning problem. It learns to maximize the reward based on the agent's behavior in the environment. Through results, the performance comparison between the proposed approach and state-of-the-art path planning approaches such as A-star, Dijkstra, and Sarsa algorithms are evaluated in terms of learning time and path length. We show through results that the proposed approach results in improved performance when compared to state-of-the-art approaches. Further, the effect of an increased number of obstacles are evaluated on the performance of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助xxy采纳,获得10
1秒前
三十八年夏至完成签到,获得积分10
2秒前
娄十三完成签到 ,获得积分10
3秒前
4秒前
5秒前
妮妮完成签到 ,获得积分10
6秒前
6秒前
xxfsx应助scfsl采纳,获得50
8秒前
10秒前
芊芊墨完成签到,获得积分10
10秒前
xiaolei完成签到 ,获得积分10
10秒前
10秒前
桐桐应助曹能豪采纳,获得10
11秒前
善学以致用应助风清扬采纳,获得10
11秒前
xxy发布了新的文献求助10
12秒前
629464626发布了新的文献求助10
12秒前
ym发布了新的文献求助10
13秒前
希望天下0贩的0应助wg采纳,获得10
13秒前
水濑心源发布了新的文献求助10
13秒前
共享精神应助霍鑫鑫采纳,获得10
15秒前
当当完成签到,获得积分10
15秒前
15秒前
研友_VZG7GZ应助儒雅的夏山采纳,获得10
18秒前
今后应助xiaoxiao采纳,获得30
18秒前
18秒前
李爱国应助正直的西牛采纳,获得10
18秒前
无极微光应助xuan采纳,获得20
20秒前
21秒前
曹能豪发布了新的文献求助10
23秒前
24秒前
所所应助轻松向彤采纳,获得10
27秒前
Hello应助坚强的怜南采纳,获得10
27秒前
芊芊墨客完成签到,获得积分10
27秒前
虚心的傲柏完成签到,获得积分10
28秒前
南枝发布了新的文献求助10
28秒前
summi完成签到 ,获得积分10
29秒前
30秒前
30秒前
sora完成签到,获得积分10
31秒前
刘窜疯完成签到 ,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Treatise on Geochemistry 1500
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5515337
求助须知:如何正确求助?哪些是违规求助? 4608797
关于积分的说明 14513555
捐赠科研通 4545218
什么是DOI,文献DOI怎么找? 2490420
邀请新用户注册赠送积分活动 1472454
关于科研通互助平台的介绍 1444149