Q-learning-based unmanned aerial vehicle path planning with dynamic obstacle avoidance

避障 运动规划 计算机科学 障碍物 路径(计算) 任意角度路径规划 Dijkstra算法 最短路径问题 强化学习 人工智能 快速通道 避碰 图形 实时计算 数学优化 移动机器人 机器人 理论计算机科学 数学 碰撞 计算机网络 计算机安全 政治学 法学
作者
Amala Sonny,Sreenivasa Reddy Yeduri,Linga Reddy Cenkeramaddi
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:147: 110773-110773 被引量:35
标识
DOI:10.1016/j.asoc.2023.110773
摘要

Recently, unmanned aerial vehicles (UAVs) have shown promising results for autonomous sensing. UAVs have been deployed for multiple applications that include surveillance, mapping, tracking, and search operations. Finding an efficient path between a source and a goal is a critical issue that has been the focus of recent exploration. Many path-planning algorithms are utilized to find an efficient path for a UAV to navigate from a source to a goal with obstacle avoidance. Despite the extensive literature and numerous research proposals for path planning, dynamic obstacle avoidance has not been addressed with machine learning. When the obstacles are dynamic, i.e., they can change their position over time, and the constraints of the path planning algorithm become more challenging. This in turn adds a layer of complexity to the path planning algorithm. To address this challenge, a Q-learning algorithm is proposed in this work to facilitate efficient path planning for UAVs with both static and dynamic obstacle avoidance. We introduced the Shortest Distance Prioritization policy in the learning process which marginally reduces the distance that the UAV has to travel to reach the goal. Further, the proposed Q-learning algorithm adopts a grid-graph-based method to solve the path-planning problem. It learns to maximize the reward based on the agent's behavior in the environment. Through results, the performance comparison between the proposed approach and state-of-the-art path planning approaches such as A-star, Dijkstra, and Sarsa algorithms are evaluated in terms of learning time and path length. We show through results that the proposed approach results in improved performance when compared to state-of-the-art approaches. Further, the effect of an increased number of obstacles are evaluated on the performance of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安冉然发布了新的文献求助10
1秒前
大晨发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
ycjfs1995完成签到,获得积分10
3秒前
小蚂蚁发布了新的文献求助10
5秒前
5秒前
ziji完成签到 ,获得积分10
5秒前
牛牛公主发布了新的文献求助10
6秒前
黄芬芬完成签到,获得积分20
7秒前
开朗忆寒完成签到,获得积分10
7秒前
yp发布了新的文献求助30
7秒前
李爱国应助好蓝采纳,获得10
7秒前
粗暴的鞋垫完成签到,获得积分10
8秒前
一一完成签到,获得积分10
8秒前
8秒前
科研小废物应助hh采纳,获得10
9秒前
bkagyin应助hh采纳,获得10
9秒前
9秒前
踏实的哑铃完成签到,获得积分10
9秒前
不安青牛应助亚克基斯采纳,获得10
9秒前
9秒前
耍酷的冷雪完成签到,获得积分10
9秒前
10秒前
研友_WnqRGZ发布了新的文献求助10
10秒前
ding应助pinecone采纳,获得10
10秒前
lcj1014发布了新的文献求助10
10秒前
OMR123完成签到,获得积分10
10秒前
11秒前
11秒前
李健的粉丝团团长应助xxl采纳,获得10
12秒前
12秒前
qskysky完成签到,获得积分10
12秒前
王王赵发布了新的文献求助50
12秒前
酷酷纸飞机完成签到,获得积分10
12秒前
12秒前
orixero应助ShengzhangLiu采纳,获得10
12秒前
金金完成签到 ,获得积分10
12秒前
猎空发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 800
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4385414
求助须知:如何正确求助?哪些是违规求助? 3878159
关于积分的说明 12081150
捐赠科研通 3521757
什么是DOI,文献DOI怎么找? 1932666
邀请新用户注册赠送积分活动 973846
科研通“疑难数据库(出版商)”最低求助积分说明 872047