Q-learning-based unmanned aerial vehicle path planning with dynamic obstacle avoidance

避障 运动规划 计算机科学 障碍物 路径(计算) 任意角度路径规划 Dijkstra算法 最短路径问题 强化学习 人工智能 快速通道 避碰 图形 实时计算 数学优化 移动机器人 机器人 理论计算机科学 数学 碰撞 计算机网络 计算机安全 法学 政治学
作者
Amala Sonny,Sreenivasa Reddy Yeduri,Linga Reddy Cenkeramaddi
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:147: 110773-110773 被引量:35
标识
DOI:10.1016/j.asoc.2023.110773
摘要

Recently, unmanned aerial vehicles (UAVs) have shown promising results for autonomous sensing. UAVs have been deployed for multiple applications that include surveillance, mapping, tracking, and search operations. Finding an efficient path between a source and a goal is a critical issue that has been the focus of recent exploration. Many path-planning algorithms are utilized to find an efficient path for a UAV to navigate from a source to a goal with obstacle avoidance. Despite the extensive literature and numerous research proposals for path planning, dynamic obstacle avoidance has not been addressed with machine learning. When the obstacles are dynamic, i.e., they can change their position over time, and the constraints of the path planning algorithm become more challenging. This in turn adds a layer of complexity to the path planning algorithm. To address this challenge, a Q-learning algorithm is proposed in this work to facilitate efficient path planning for UAVs with both static and dynamic obstacle avoidance. We introduced the Shortest Distance Prioritization policy in the learning process which marginally reduces the distance that the UAV has to travel to reach the goal. Further, the proposed Q-learning algorithm adopts a grid-graph-based method to solve the path-planning problem. It learns to maximize the reward based on the agent's behavior in the environment. Through results, the performance comparison between the proposed approach and state-of-the-art path planning approaches such as A-star, Dijkstra, and Sarsa algorithms are evaluated in terms of learning time and path length. We show through results that the proposed approach results in improved performance when compared to state-of-the-art approaches. Further, the effect of an increased number of obstacles are evaluated on the performance of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小粽子完成签到,获得积分10
刚刚
李健的小迷弟应助害怕采纳,获得10
1秒前
1秒前
森林木发布了新的文献求助10
2秒前
山东阿文发布了新的文献求助10
4秒前
4秒前
所所应助天真的红酒采纳,获得10
4秒前
ajun完成签到,获得积分10
5秒前
英俊的铭应助的速度采纳,获得10
7秒前
楼台杏花琴弦完成签到,获得积分10
7秒前
纵坐标完成签到 ,获得积分10
8秒前
8秒前
9秒前
romio发布了新的文献求助10
9秒前
森林木完成签到,获得积分10
9秒前
10秒前
Jasper应助Yang采纳,获得10
10秒前
11秒前
nanaki给Sencetich的求助进行了留言
13秒前
15秒前
15秒前
赘婿应助科研通管家采纳,获得10
15秒前
15秒前
勿明应助科研通管家采纳,获得30
15秒前
大个应助科研通管家采纳,获得10
15秒前
凉凉应助科研通管家采纳,获得10
16秒前
dong应助科研通管家采纳,获得10
16秒前
CipherSage应助科研通管家采纳,获得10
16秒前
ED应助科研通管家采纳,获得10
16秒前
小蘑菇应助科研通管家采纳,获得10
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
蓝毗尼完成签到 ,获得积分10
16秒前
aldblm完成签到,获得积分10
17秒前
Xiao完成签到,获得积分20
17秒前
18秒前
休斯顿发布了新的文献求助10
21秒前
无花果应助aldblm采纳,获得10
22秒前
活力万言完成签到,获得积分20
22秒前
ding应助吃猫的鱼采纳,获得10
22秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4023774
求助须知:如何正确求助?哪些是违规求助? 3563731
关于积分的说明 11343534
捐赠科研通 3295121
什么是DOI,文献DOI怎么找? 1814951
邀请新用户注册赠送积分活动 889583
科研通“疑难数据库(出版商)”最低求助积分说明 813023