亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Hierarchical Graph V-Net With Semi-Supervised Pre-Training for Histological Image Based Breast Cancer Classification

计算机科学 模式识别(心理学) 图形 人工智能 像素 乳腺癌 背景(考古学) 机器学习 癌症 理论计算机科学 医学 生物 内科学 古生物学
作者
Yonghao Li,Yiqing Shen,Jiadong Zhang,Shujie Song,Zhenhui Li,Jing Ke,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (12): 3907-3918 被引量:17
标识
DOI:10.1109/tmi.2023.3317132
摘要

Numerous patch-based methods have recently been proposed for histological image based breast cancer classification. However, their performance could be highly affected by ignoring spatial contextual information in the whole slide image (WSI). To address this issue, we propose a novel hierarchical Graph V-Net by integrating 1) patch-level pre-training and 2) context-based fine-tuning, with a hierarchical graph network. Specifically, a semi-supervised framework based on knowledge distillation is first developed to pre-train a patch encoder for extracting disease-relevant features. Then, a hierarchical Graph V-Net is designed to construct a hierarchical graph representation from neighboring/similar individual patches for coarse-to-fine classification, where each graph node (corresponding to one patch) is attached with extracted disease-relevant features and its target label during training is the average label of all pixels in the corresponding patch. To evaluate the performance of our proposed hierarchical Graph V-Net, we collect a large WSI dataset of 560 WSIs, with 30 labeled WSIs from the BACH dataset (through our further refinement), 30 labeled WSIs and 500 unlabeled WSIs from Yunnan Cancer Hospital. Those 500 unlabeled WSIs are employed for patch-level pre-training to improve feature representation, while 60 labeled WSIs are used to train and test our proposed hierarchical Graph V-Net. Both comparative assessment and ablation studies demonstrate the superiority of our proposed hierarchical Graph V-Net over state-of-the-art methods in classifying breast cancer from WSIs. The source code and our annotations for the BACH dataset have been released at https://github.com/lyhkevin/Graph-V-Net.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
犬来八荒发布了新的文献求助10
1秒前
8秒前
Epiphany完成签到,获得积分10
8秒前
12秒前
上官若男应助温婉的凝雁采纳,获得10
21秒前
Alvin完成签到 ,获得积分10
22秒前
温婉的凝雁完成签到,获得积分10
27秒前
33秒前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
王玉发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Cherry发布了新的文献求助10
1分钟前
1分钟前
昌莆完成签到 ,获得积分10
1分钟前
2分钟前
冉亦完成签到,获得积分10
2分钟前
搜集达人应助null采纳,获得10
2分钟前
可爱的函函应助香菜肉丸采纳,获得10
2分钟前
2分钟前
平淡映秋发布了新的文献求助10
2分钟前
focus完成签到 ,获得积分10
2分钟前
香菜肉丸发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
犬来八荒发布了新的文献求助10
3分钟前
simple1完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
脑洞疼应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Cherry发布了新的文献求助10
3分钟前
charih完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617095
求助须知:如何正确求助?哪些是违规求助? 4701461
关于积分的说明 14913699
捐赠科研通 4749054
什么是DOI,文献DOI怎么找? 2549285
邀请新用户注册赠送积分活动 1512345
关于科研通互助平台的介绍 1474091