已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and Validation of an Automated Image-Based Deep Learning Platform for Sarcopenia Assessment in Head and Neck Cancer

医学 肌萎缩 头颈部鳞状细胞癌 头颈部癌 放射治疗 癌症 内科学 放射科 肿瘤科
作者
Zezhong Ye,Anurag Saraf,Yashwanth Ravipati,Frank Hoebers,Paul J. Catalano,Yining Zha,Anna Zapaishchykova,Jirapat Likitlersuang,Christian V. Guthier,Roy B. Tishler,Jonathan D. Schoenfeld,Danielle N. Margalit,Robert I. Haddad,Raymond H. Mak,Mohamed A. Naser,Kareem A. Wahid,Jaakko Sahlsten,Joel Jaskari,Kimmo Kaski,Antti Mäkitie
出处
期刊:JAMA network open [American Medical Association]
卷期号:6 (8): e2328280-e2328280 被引量:32
标识
DOI:10.1001/jamanetworkopen.2023.28280
摘要

Importance Sarcopenia is an established prognostic factor in patients with head and neck squamous cell carcinoma (HNSCC); the quantification of sarcopenia assessed by imaging is typically achieved through the skeletal muscle index (SMI), which can be derived from cervical skeletal muscle segmentation and cross-sectional area. However, manual muscle segmentation is labor intensive, prone to interobserver variability, and impractical for large-scale clinical use. Objective To develop and externally validate a fully automated image-based deep learning platform for cervical vertebral muscle segmentation and SMI calculation and evaluate associations with survival and treatment toxicity outcomes. Design, Setting, and Participants For this prognostic study, a model development data set was curated from publicly available and deidentified data from patients with HNSCC treated at MD Anderson Cancer Center between January 1, 2003, and December 31, 2013. A total of 899 patients undergoing primary radiation for HNSCC with abdominal computed tomography scans and complete clinical information were selected. An external validation data set was retrospectively collected from patients undergoing primary radiation therapy between January 1, 1996, and December 31, 2013, at Brigham and Women’s Hospital. The data analysis was performed between May 1, 2022, and March 31, 2023. Exposure C3 vertebral skeletal muscle segmentation during radiation therapy for HNSCC. Main Outcomes and Measures Overall survival and treatment toxicity outcomes of HNSCC. Results The total patient cohort comprised 899 patients with HNSCC (median [range] age, 58 [24-90] years; 140 female [15.6%] and 755 male [84.0%]). Dice similarity coefficients for the validation set (n = 96) and internal test set (n = 48) were 0.90 (95% CI, 0.90-0.91) and 0.90 (95% CI, 0.89-0.91), respectively, with a mean 96.2% acceptable rate between 2 reviewers on external clinical testing (n = 377). Estimated cross-sectional area and SMI values were associated with manually annotated values (Pearson r = 0.99; P < .001) across data sets. On multivariable Cox proportional hazards regression, SMI-derived sarcopenia was associated with worse overall survival (hazard ratio, 2.05; 95% CI, 1.04-4.04; P = .04) and longer feeding tube duration (median [range], 162 [6-1477] vs 134 [15-1255] days; hazard ratio, 0.66; 95% CI, 0.48-0.89; P = .006) than no sarcopenia. Conclusions and Relevance This prognostic study’s findings show external validation of a fully automated deep learning pipeline to accurately measure sarcopenia in HNSCC and an association with important disease outcomes. The pipeline could enable the integration of sarcopenia assessment into clinical decision making for individuals with HNSCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
文欣完成签到 ,获得积分0
刚刚
研友_8RyzBZ完成签到,获得积分10
1秒前
8秒前
Hhhhh完成签到 ,获得积分10
8秒前
小黄还你好完成签到 ,获得积分10
9秒前
活力的惜萱完成签到,获得积分10
11秒前
Hhhhh发布了新的文献求助10
11秒前
执念完成签到 ,获得积分10
15秒前
Ericlee发布了新的文献求助10
16秒前
19秒前
顾矜应助长情冰露采纳,获得10
20秒前
呵呵完成签到,获得积分10
21秒前
yznfly应助Ericlee采纳,获得20
21秒前
张天泽完成签到,获得积分10
23秒前
23秒前
yaooo发布了新的文献求助10
23秒前
丘丘完成签到 ,获得积分10
27秒前
Ericlee完成签到,获得积分20
28秒前
Nomb1发布了新的文献求助10
28秒前
calm完成签到,获得积分10
29秒前
陈谦嵩完成签到 ,获得积分10
29秒前
平城落叶完成签到,获得积分10
30秒前
百里守约完成签到 ,获得积分10
32秒前
传奇3应助Nomb1采纳,获得10
33秒前
Hello应助OvO_4577采纳,获得10
33秒前
37秒前
yaooo完成签到,获得积分10
38秒前
称心的语梦完成签到,获得积分10
39秒前
周诗琪发布了新的文献求助10
42秒前
搜集达人应助徐勇采纳,获得10
43秒前
白日幻想家完成签到 ,获得积分10
44秒前
月下独酌42应助Hhhhh采纳,获得10
46秒前
xu完成签到,获得积分10
50秒前
瘦瘦乌龟完成签到 ,获得积分10
54秒前
Owen应助周诗琪采纳,获得10
56秒前
小洁完成签到 ,获得积分10
1分钟前
1分钟前
徐勇发布了新的文献求助10
1分钟前
过期的帕罗西汀完成签到,获得积分10
1分钟前
科研通AI6应助Zhao_Ruilin采纳,获得10
1分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502564
求助须知:如何正确求助?哪些是违规求助? 4598355
关于积分的说明 14463932
捐赠科研通 4531953
什么是DOI,文献DOI怎么找? 2483736
邀请新用户注册赠送积分活动 1466943
关于科研通互助平台的介绍 1439576