亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Triple Change Detection Network via Joint Multifrequency and Full-Scale Swin-Transformer for Remote Sensing Images

计算机科学 判别式 人工智能 模式识别(心理学) 卷积神经网络 变压器 联营 特征学习 特征(语言学) 变更检测 特征提取 电压 工程类 语言学 哲学 电气工程
作者
Dinghua Xue,Tao Lei,Shuangming Yang,Zhiyong Lv,Tongfei Liu,Yaochu Jin,Asoke K. Nandi
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:19
标识
DOI:10.1109/tgrs.2023.3320288
摘要

Although deep learning-based change detection (CD) methods achieve great success in remote sensing images, they still suffer from two main challenges. First, popular Convolutional Neural Networks (CNNs) are weak in extracting discriminated features focusing on changed regions, since most methods ignore the multi-frequency components of bi-temporal images. Second, although existing CD methods employ the Transformer structure to capture long-range dependency for global feature representation, it is difficult for them to simultaneously take into account the long-range dependency of changed objects at various scales. To address the above issues, we propose a triple change detection network (TCD-Net) via joint multi-frequency and full-scale Swin-Transformer. The proposed TCD-Net has two main advantages. First, we propose a multi-frequency channel attention (MFCA) module to boost the ability of modeling the channel correlation, which can compensate for the problem of insufficient feature representation caused by only performing global average pooling (GAP). Furthermore, a joint multi-frequency difference feature enhancement (JM-DFE) guiding block is proposed to improve the boundary quality and the position awareness of truly changed objects, which can effectively extract channel features of multi-frequency information and thus improve the discriminative ability of features. Second, unlike Siamese-based structures, we propose a full-scale Swin-Transformer (FST) module as the third branch to model and aggregate the long-range dependency of multi-scale changed objects, which can alleviate the missed detections of small objects and achieve more compact changed regions effectively. Experiments on three public CD datasets exhibit that the proposed TCD-Net achieves better CD accuracy with smaller model complexity than state-of-the-art methods. The code is publicly available at https://github.com/RSCD-mz/TCD-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
威武灵阳发布了新的文献求助10
3秒前
4秒前
yunxiao完成签到 ,获得积分10
6秒前
14秒前
19秒前
123321123发布了新的文献求助10
21秒前
傻芙芙的完成签到,获得积分10
21秒前
BB发布了新的文献求助10
22秒前
卿霜完成签到 ,获得积分10
26秒前
小蘑菇应助普鲁卡因采纳,获得10
36秒前
顾矜应助加菲丰丰采纳,获得10
38秒前
41秒前
乐乐应助殷勤的筝采纳,获得10
42秒前
纪言七许完成签到 ,获得积分10
42秒前
42秒前
ying818k完成签到,获得积分10
43秒前
敏感的博超完成签到 ,获得积分10
44秒前
45秒前
快乐谷蓝完成签到,获得积分10
45秒前
45秒前
46秒前
魔幻的山彤完成签到,获得积分10
46秒前
wanci应助光轮2000采纳,获得10
47秒前
48秒前
普鲁卡因发布了新的文献求助10
51秒前
55秒前
55秒前
灵梦柠檬酸完成签到,获得积分10
58秒前
钉钉发布了新的文献求助10
59秒前
1分钟前
光轮2000发布了新的文献求助10
1分钟前
1分钟前
传奇3应助勤恳的映真采纳,获得10
1分钟前
又声完成签到,获得积分10
1分钟前
1分钟前
殷勤的筝发布了新的文献求助10
1分钟前
洞两完成签到,获得积分10
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488380
求助须知:如何正确求助?哪些是违规求助? 4587279
关于积分的说明 14413346
捐赠科研通 4518553
什么是DOI,文献DOI怎么找? 2475911
邀请新用户注册赠送积分活动 1461433
关于科研通互助平台的介绍 1434333