Short video-driven deep perception for city imagery

地标 卫星图像 地理 地图学 航空影像 感知 首都 建筑 人工智能 计算机科学 遥感 考古 心理学 经济地理学 神经科学
作者
Xiana Chen,Junxian Yu,Yingying Zhu,Ruonan Wu,Wei Tu
出处
期刊:Environment And Planning B: Urban Analytics And City Science [SAGE Publishing]
卷期号:51 (3): 689-704 被引量:3
标识
DOI:10.1177/23998083231193236
摘要

City imagery is essential for enhancing city characteristics and disseminating city identity. As an emerging medium, short videos can intuitively reflect people’s perception of complex urban environment. In this study, we proposed a short video-driven deep learning perception framework to sense city imagery. To quantitatively deconstruct spatial imagery of urban space, deep neural network is used for pixel-level semantic segmentation. K-means clustering and hierarchical clustering analysis are carried out to extract and reveal the spatial imagery characteristics at the landmark level and the city level. Taking the Guangdong-Hong Kong-Macao Great Bay Area (GBA) as the study area, an experiment was carried out with TikTok short videos. The results showed that (1) the spatial imagery of the GBA cities are divided into four categories: Green Waterfront, including Jiangmen, Huizhou, Zhuhai, Zhaoqing, and Zhongshan; Humanistic Capital, including Hong Kong, Guangzhou, and Foshan; Modern Green City, including Shenzhen and Dongguan; Sky City, that is, Macao; (2) the landmark imagery in GBA can be characterized into five groups: Green Water and Blue Sky, Ancient Architecture of Greenery, Modern Architecture, Staggered Roads, and Urban Green Lung. It further investigated spatial distribution of landmark-level spatial imagery. These results prove the feasibility of sensing city imagery with short videos and provide useful insights into city imagery studies. It provides a new approach for understanding and spreading the city imagery over Internet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小马甲应助干净翠采纳,获得10
1秒前
song完成签到,获得积分10
1秒前
雨荷发布了新的文献求助10
1秒前
Rwmqwq发布了新的文献求助10
1秒前
公西元柏发布了新的文献求助10
2秒前
2秒前
研友_VZG7GZ应助芊子采纳,获得10
2秒前
wanci应助HAL9000采纳,获得10
3秒前
3秒前
忐忑的天真完成签到 ,获得积分10
3秒前
3秒前
4秒前
所所应助yumeng采纳,获得10
4秒前
陵墨影完成签到,获得积分10
4秒前
4秒前
镓氧锌钇铀应助MesureWu采纳,获得50
5秒前
6秒前
yaya完成签到,获得积分20
6秒前
6秒前
7秒前
kk发布了新的文献求助10
7秒前
研友_Z345g8完成签到,获得积分10
7秒前
huangyao给huangyao的求助进行了留言
7秒前
7秒前
7秒前
科目三应助爬不起来采纳,获得10
7秒前
无花果应助灵巧的寄风采纳,获得10
7秒前
7秒前
风中沂完成签到,获得积分10
7秒前
李爱国应助如此纠结采纳,获得10
7秒前
内向尔安发布了新的文献求助10
8秒前
8秒前
8秒前
开心易真完成签到 ,获得积分10
9秒前
9秒前
耍酷的谷秋完成签到,获得积分10
9秒前
善学以致用应助Polarbear29采纳,获得10
9秒前
10秒前
多情怡完成签到,获得积分20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286035
求助须知:如何正确求助?哪些是违规求助? 4438924
关于积分的说明 13819501
捐赠科研通 4320540
什么是DOI,文献DOI怎么找? 2371517
邀请新用户注册赠送积分活动 1367063
关于科研通互助平台的介绍 1330462