Optimization of Gelatin Methacryloyl Hydrogel Properties through an Artificial Neural Network Model

自愈水凝胶 明胶 材料科学 生物相容性 生物医学工程 刚度 化学工程 复合材料 高分子化学 化学 有机化学 医学 工程类 冶金
作者
İsmail Can Karaoğlu,Aybaran Olca Kebabci,Seda Kızılel
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (38): 44796-44808 被引量:24
标识
DOI:10.1021/acsami.3c12207
摘要

Gelatin methacryloyl (GelMA) hydrogels are promising materials for tissue engineering applications due to their biocompatibility and tunable properties. However, the time-consuming process of preparing GelMA hydrogels with desirable properties for specific biomedical applications limits their clinical use. Visible-light-induced cross-linking is a well-known method for the preparation of GelMA hydrogels; however, a comprehensive investigation on the influence of critical parameters such as Eosin Y (EY), triethanolamine (TEA), and N-vinyl-2-pyrrolidone (NVP) concentrations on the stiffness and gelation time has yet to be performed. In this study, we systematically investigated the effect of these critical parameters on the stiffness and gelation time of GelMA hydrogels. We developed an artificial neural network (ANN) model with three input variables, EY, TEA, and NVP concentrations, and two output variables, Young's modulus and gelation time, derived from our experimental design. Through the alteration of individual chemical concentrations, [EY] between 0.005 and 0.5 mM and [TEA] and [NVP] between 10 and 1000 mM, we studied the impact of these alterations on the real-time values of stiffness and gelation time. Furthermore, we demonstrated the validity of the ANN model in predicting the properties of GelMA hydrogels. We also studied cell survival to establish nontoxic concentration ranges for each component, enabling safer use of GelMA hydrogels in relevant biomedical applications. Our results showed that the ANN model can accurately predict the properties of GelMA hydrogels, allowing for the synthesis of hydrogels with desirable stiffness for various biomedical applications. In conclusion, our study provides a comprehensive library that characterizes the stiffness and gelation time and demonstrates the potential of the ANN model to predict these properties of GelMA hydrogels depending on the critical parameters. The ANN models developed here can facilitate the optimization of GelMA hydrogels with the most efficient mechanical properties that resemble a native extracellular matrix and better address the need in the in vivo microenvironment. The approach of this study is to bring research about the synthesis of GelMA hydrogels to a new level where the synthesis of these hydrogels can be standardized with minimum cost and effort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XL神放完成签到 ,获得积分10
刚刚
刚刚
熬夜猝死的我完成签到 ,获得积分10
1秒前
3秒前
3秒前
4秒前
orixero应助李哈哈采纳,获得10
5秒前
Joyyy_Zhao完成签到,获得积分20
5秒前
5秒前
pc发布了新的文献求助20
7秒前
LKX完成签到 ,获得积分10
8秒前
Orange应助雪白小丸子采纳,获得100
8秒前
科研通AI2S应助重要慕晴采纳,获得10
8秒前
隐形曼青应助韦良晨采纳,获得10
9秒前
betsydouglas14应助研友_Z7WQzZ采纳,获得15
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
10秒前
ding应助科研通管家采纳,获得10
10秒前
打打应助科研通管家采纳,获得10
10秒前
FengGo发布了新的文献求助10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
fifteen应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
Joyyy_Zhao发布了新的文献求助30
10秒前
12秒前
科研通AI5应助harryhey采纳,获得10
12秒前
机智乐蕊发布了新的文献求助30
14秒前
隐形曼青应助风趣夜云采纳,获得10
14秒前
糊涂的储发布了新的文献求助10
14秒前
15秒前
353851547crf完成签到,获得积分10
15秒前
有魅力的安蕾完成签到 ,获得积分10
16秒前
汉堡包应助pc采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4727543
求助须知:如何正确求助?哪些是违规求助? 4084164
关于积分的说明 12631753
捐赠科研通 3790854
什么是DOI,文献DOI怎么找? 2093472
邀请新用户注册赠送积分活动 1119306
科研通“疑难数据库(出版商)”最低求助积分说明 995490