Optimization of Gelatin Methacryloyl Hydrogel Properties through an Artificial Neural Network Model

自愈水凝胶 明胶 材料科学 生物相容性 生物医学工程 刚度 化学工程 复合材料 高分子化学 化学 有机化学 医学 工程类 冶金
作者
İsmail Can Karaoğlu,Aybaran Olca Kebabci,Seda Kızılel
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (38): 44796-44808 被引量:18
标识
DOI:10.1021/acsami.3c12207
摘要

Gelatin methacryloyl (GelMA) hydrogels are promising materials for tissue engineering applications due to their biocompatibility and tunable properties. However, the time-consuming process of preparing GelMA hydrogels with desirable properties for specific biomedical applications limits their clinical use. Visible-light-induced cross-linking is a well-known method for the preparation of GelMA hydrogels; however, a comprehensive investigation on the influence of critical parameters such as Eosin Y (EY), triethanolamine (TEA), and N-vinyl-2-pyrrolidone (NVP) concentrations on the stiffness and gelation time has yet to be performed. In this study, we systematically investigated the effect of these critical parameters on the stiffness and gelation time of GelMA hydrogels. We developed an artificial neural network (ANN) model with three input variables, EY, TEA, and NVP concentrations, and two output variables, Young's modulus and gelation time, derived from our experimental design. Through the alteration of individual chemical concentrations, [EY] between 0.005 and 0.5 mM and [TEA] and [NVP] between 10 and 1000 mM, we studied the impact of these alterations on the real-time values of stiffness and gelation time. Furthermore, we demonstrated the validity of the ANN model in predicting the properties of GelMA hydrogels. We also studied cell survival to establish nontoxic concentration ranges for each component, enabling safer use of GelMA hydrogels in relevant biomedical applications. Our results showed that the ANN model can accurately predict the properties of GelMA hydrogels, allowing for the synthesis of hydrogels with desirable stiffness for various biomedical applications. In conclusion, our study provides a comprehensive library that characterizes the stiffness and gelation time and demonstrates the potential of the ANN model to predict these properties of GelMA hydrogels depending on the critical parameters. The ANN models developed here can facilitate the optimization of GelMA hydrogels with the most efficient mechanical properties that resemble a native extracellular matrix and better address the need in the in vivo microenvironment. The approach of this study is to bring research about the synthesis of GelMA hydrogels to a new level where the synthesis of these hydrogels can be standardized with minimum cost and effort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
卢敏明发布了新的文献求助150
1秒前
1秒前
苗青完成签到,获得积分10
1秒前
wanglong0118发布了新的文献求助10
3秒前
Vincent发布了新的文献求助10
4秒前
4秒前
Yy完成签到,获得积分20
4秒前
4秒前
5秒前
不要科研完成签到,获得积分20
5秒前
仔仔糖发布了新的文献求助10
5秒前
5秒前
迷人的天抒应助bofu采纳,获得10
5秒前
5秒前
雪饼完成签到,获得积分10
6秒前
Ayrin完成签到 ,获得积分10
6秒前
没有名称发布了新的文献求助10
6秒前
7秒前
Orange应助凌惠娟采纳,获得10
7秒前
gaobowang发布了新的文献求助10
7秒前
怡然铃铛发布了新的文献求助10
8秒前
8秒前
大个应助哇咔咔采纳,获得10
9秒前
LIN_YX发布了新的文献求助10
10秒前
wuhao发布了新的文献求助10
10秒前
11秒前
俭朴大碗发布了新的文献求助20
11秒前
姜露萍完成签到,获得积分10
11秒前
junjun2011完成签到,获得积分10
11秒前
happyrrc完成签到,获得积分10
11秒前
淡定静白发布了新的文献求助10
12秒前
chenll1988完成签到 ,获得积分10
12秒前
keroro发布了新的文献求助10
12秒前
12秒前
雪饼发布了新的文献求助10
12秒前
迷人的天抒应助bofu采纳,获得10
13秒前
FAST发布了新的文献求助10
13秒前
gaobowang完成签到,获得积分10
13秒前
KIKIKI完成签到,获得积分10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3977341
求助须知:如何正确求助?哪些是违规求助? 3521546
关于积分的说明 11208902
捐赠科研通 3258622
什么是DOI,文献DOI怎么找? 1799300
邀请新用户注册赠送积分活动 878198
科研通“疑难数据库(出版商)”最低求助积分说明 806810