Dislocation density-mediated creep ageing behavior of an Al-Cu-Li alloy

蠕动 材料科学 成核 位错 合金 位错蠕变 数字密度 降水 延伸率 沉淀硬化 冶金 变形(气象学) 复合材料 极限抗拉强度 热力学 物理 气象学
作者
Chang Zhou,Lihua Zhan,Chunhui Liu,Minghui Huang
出处
期刊:Journal of Materials Science & Technology [Elsevier]
卷期号:174: 204-217 被引量:29
标识
DOI:10.1016/j.jmst.2023.08.011
摘要

Creep aging is well-known to be a time-dependent, coupled process of deformation and precipitation strengthening for age-hardening alloys. Its existing mechanisms are mainly attributed to those interactions between atomic diffusion and dislocation motion. However, an understanding of the relationship between dislocation density and a special multistage creep behavior, i.e., double steady creep feature, is still far limited. Here we investigate the effect of various dislocation density levels on such an abnormal multistage creep of an Al-Cu-Li alloy. We find that the increased dislocation densities enable an apparent time decrease (from 6.2 h to 0.8 h) of their first steady Ⅱ-stage. The yield strength of post-aged samples increases from 425.0 MPa to 580.0 MPa while the corresponding elongation decreases from 12.3% to 7.3% for the creep-aged samples #1 to #4. Microstructural results also reveal that a great difference in dislocation configuration, tailored by various density levels, results in varying creep processes of the Ⅱ-stage. This stage is closely related to the nucleation and early growth of T1 precipitates. Their number densities (maximum: 2.9 × 1019 m–3) and the average length (maximum: 21.3 nm) of T1 precipitates are much smaller than those of the stable peak-aged T1 phases, suggesting that creep Ⅱ-stage of all three creep-aged samples is dominant by the nucleation and initial growth of those T1 precipitates. This study provides valuable insights into the dislocation density-mediated creep deformation of an Al-Cu-Li alloy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助大豹子采纳,获得10
2秒前
2秒前
玄风举报小红帽求助涉嫌违规
3秒前
nutliu完成签到,获得积分10
3秒前
mario完成签到,获得积分20
4秒前
4秒前
5秒前
bkagyin应助哈哈镜阿姐采纳,获得10
8秒前
8秒前
mario发布了新的文献求助10
9秒前
云水雾心发布了新的文献求助10
10秒前
西米关注了科研通微信公众号
11秒前
伶俐的颤发布了新的文献求助10
12秒前
15秒前
NEW发布了新的文献求助10
21秒前
24秒前
Hanoi347应助科研通管家采纳,获得10
26秒前
小不点应助科研通管家采纳,获得10
26秒前
26秒前
彭于晏应助科研通管家采纳,获得10
26秒前
orixero应助科研通管家采纳,获得10
26秒前
SciGPT应助科研通管家采纳,获得10
26秒前
Hanoi347应助科研通管家采纳,获得30
26秒前
完美世界应助科研通管家采纳,获得10
26秒前
拼搏应助科研通管家采纳,获得10
26秒前
FashionBoy应助科研通管家采纳,获得10
26秒前
JamesPei应助科研通管家采纳,获得10
26秒前
小不点应助科研通管家采纳,获得10
26秒前
Josie应助科研通管家采纳,获得10
26秒前
拼搏应助科研通管家采纳,获得10
26秒前
我是老大应助科研通管家采纳,获得10
26秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
在水一方应助科研通管家采纳,获得10
26秒前
赘婿应助科研通管家采纳,获得10
27秒前
Ava应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
Lucas应助科研通管家采纳,获得10
27秒前
顾矜应助科研通管家采纳,获得10
27秒前
桐桐应助科研通管家采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557972
求助须知:如何正确求助?哪些是违规求助? 4642937
关于积分的说明 14669867
捐赠科研通 4584431
什么是DOI,文献DOI怎么找? 2514801
邀请新用户注册赠送积分活动 1489002
关于科研通互助平台的介绍 1459619