已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Reinforcement learning-based comprehensive learning grey wolf optimizer for feature selection

强化学习 计算机科学 人工智能 机器学习 维数之咒 特征(语言学) 过程(计算) 适应性 集合(抽象数据类型) 特征选择 生态学 哲学 语言学 生物 程序设计语言 操作系统
作者
Zhenpeng Hu,Xiaobing Yu
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:149: 110959-110959
标识
DOI:10.1016/j.asoc.2023.110959
摘要

Turning heavy and high-dimensional raw data into knowledge for decision makers is a complex process. Feature selection (FS) can do this task well by removing irrelevant and/or redundant parts from the raw dataset, aiming at reducing dimensionality and improving accuracy. In this work, a reinforcement learning-based comprehensive learning grey wolf optimizer (RLCGWO) is designed to solve the FS problem, which is modeled as a combinatorial optimization problem. First, a comprehensive learning operator is proposed, containing the static and dynamic learning strategies. These two strategies provide GWO with the exploration capability in different ways. Second, a novel RL-based policy regulation technique is developed, which is based on the Q-learning framework. Individuals are considered as agents that obtain the state of the environment based on the state encoding technique. Meanwhile, agents select the most appropriate actions from the well-designed action set based on the information provided by the Q-table. Furthermore, agents update the stand-alone Q-table with rewards to provide themselves with more timely and accurate feedback. Third, a chaotic-based learning strategy is devised for leaders to improve the quality of the optimal solution. The comparison results of the proposed RLCGWO with six successful GWO variants and three typical algorithms on the benchmarks initially demonstrate its advantages in convergence speed and accuracy. The proposed RLCGWO is finally applied to the challenging FS problem. The comparison results with six popular algorithms on 15 UCI datasets and 3 real world high-dimensional datasets underscore its high adaptability and versatility. Taken together, the proposed RLCGWO is a promising technique for FS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
庾稀发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
五号完成签到,获得积分10
6秒前
ll完成签到 ,获得积分10
9秒前
10秒前
是龙龙呀发布了新的文献求助10
10秒前
科研通AI2S应助kkk采纳,获得10
10秒前
12秒前
12秒前
iyson发布了新的文献求助10
16秒前
Jyy77完成签到 ,获得积分10
25秒前
开朗的鞋子完成签到,获得积分10
25秒前
25秒前
小巧幼蓉完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
28秒前
隐形曼青应助Xia采纳,获得10
28秒前
健壮小懒猪完成签到,获得积分10
30秒前
随遇而安应助超帅的西牛采纳,获得20
31秒前
31秒前
tjxhtj完成签到,获得积分10
32秒前
33秒前
bluebell完成签到,获得积分10
34秒前
35秒前
一叶发布了新的文献求助10
36秒前
合适背包发布了新的文献求助10
36秒前
白榆完成签到,获得积分10
38秒前
不明生物发布了新的文献求助10
39秒前
kingmin应助科研通管家采纳,获得10
39秒前
kingmin应助科研通管家采纳,获得10
39秒前
小蘑菇应助科研通管家采纳,获得10
39秒前
田様应助科研通管家采纳,获得10
39秒前
kingmin应助科研通管家采纳,获得10
39秒前
勤奋隶应助科研通管家采纳,获得10
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
kingmin应助科研通管家采纳,获得10
40秒前
科目三应助李昕123采纳,获得10
41秒前
42秒前
44秒前
likey完成签到,获得积分10
44秒前
情怀应助不明生物采纳,获得10
46秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 500
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3865577
求助须知:如何正确求助?哪些是违规求助? 3407982
关于积分的说明 10656434
捐赠科研通 3132031
什么是DOI,文献DOI怎么找? 1727446
邀请新用户注册赠送积分活动 832314
科研通“疑难数据库(出版商)”最低求助积分说明 780195