Metabolomics and molecular dynamics unveil the therapeutic potential of epalrestat in diabetic nephropathy

糖尿病肾病 代谢组学 医学 生物信息学 计算生物学 糖尿病 生物 内分泌学
作者
Tongtong Song,Rongjin Wang,Xiaoyue Zhou,Weijia Chen,Ying Chen,Zhongying Liu,Lihui Men
出处
期刊:International Immunopharmacology [Elsevier]
卷期号:140: 112812-112812 被引量:9
标识
DOI:10.1016/j.intimp.2024.112812
摘要

Diabetic nephropathy (DN) is one of the leading clinical causes of end-stage renal failure. The classical aldose reductase (AR) inhibitor epalrestat shows beneficial effect on renal dysfunction induced by DN, with metabolic profile and molecular mechanisms remains to be investigated further. In the current study, integrated untargeted metabolomics, network pharmacology and molecular dynamics approaches were applied to explore the therapeutic mechanisms of epalrestat against DN. Firstly, untargeted serum and urine metabolomics analysis based on UPLC-Q-TOF-MS was performed, revealed that epalrestat could regulate the metabolic disorders of amino acids metabolism, arachidonic acid metabolism, pyrimidine metabolism and citrate cycle metabolism pathways after DN. Subsequently, metabolomics-based network analysis was carried out to predict potential active targets of epalrestat, mainly involving AGE-RAGE signaling pathway, TNF signaling pathway and HIF-1 signaling pathway. Moreover, a 100 ns molecular dynamics approach was employed to validate the interactions between epalrestat and the core targets, showing that epalrestat could form remarkable tight binding with GLUT1 and NFκB than it with AR. Surface-plasmon resonance assay further verified epalrestat could bind GLUT1 and NFκB proteins specifically. Overall, integrated system network analysis not only demonstrated that epalrestat could attenuate DN induced metabolic disorders and renal injuries, but also revealed that it could interact with multi-targets to play a synergistic regulatory role in the treatment of DN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宋虹完成签到,获得积分10
1秒前
江凡儿完成签到,获得积分10
1秒前
erere发布了新的文献求助10
2秒前
Faye发布了新的文献求助10
2秒前
亓亓完成签到,获得积分20
2秒前
傲娇衬衫完成签到,获得积分10
3秒前
可以打扰一下吗完成签到 ,获得积分10
3秒前
理想国的过客完成签到,获得积分10
4秒前
糖果完成签到 ,获得积分10
4秒前
老阎应助姜圆采纳,获得30
5秒前
慕青应助LLL采纳,获得10
5秒前
早睡早起身体好Q完成签到 ,获得积分10
5秒前
5秒前
Tata620应助djbj2022采纳,获得10
5秒前
Jack123完成签到,获得积分10
6秒前
6秒前
6秒前
紫婧完成签到,获得积分10
6秒前
北宇完成签到,获得积分10
6秒前
7秒前
沙拉酱完成签到 ,获得积分10
7秒前
kidult完成签到,获得积分10
8秒前
胡图图完成签到 ,获得积分10
9秒前
新乔发布了新的文献求助10
10秒前
jelly10应助张小行采纳,获得20
11秒前
万能图书馆应助亓亓采纳,获得10
11秒前
稳过儿发布了新的文献求助10
12秒前
华仔应助生动煎饼采纳,获得10
12秒前
JamesPei应助erere采纳,获得10
14秒前
丘比特应助erere采纳,获得20
14秒前
无花果应助erere采纳,获得10
14秒前
传奇3应助erere采纳,获得10
14秒前
小玉完成签到,获得积分10
14秒前
酷炫的尔丝完成签到 ,获得积分10
15秒前
15秒前
谈理想发布了新的文献求助10
15秒前
阿瑶发布了新的文献求助10
16秒前
刻苦大门完成签到 ,获得积分10
16秒前
donwe完成签到,获得积分10
16秒前
小样完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294873
求助须知:如何正确求助?哪些是违规求助? 4444563
关于积分的说明 13833824
捐赠科研通 4328729
什么是DOI,文献DOI怎么找? 2376305
邀请新用户注册赠送积分活动 1371655
关于科研通互助平台的介绍 1336835