A Novel Framework for Sentiment Analysis: Dimensionality Reduction for Machine Learning (DRML)

计算机科学 降维 人工智能 机器学习 朴素贝叶斯分类器 情绪分析 水准点(测量) 随机森林 主成分分析 决策树 特征(语言学) F1得分 数据挖掘 支持向量机 语言学 哲学 大地测量学 地理
作者
N. Dhamayanthi,B. Lavanya
出处
期刊:International Journal of Advanced Computer Science and Applications [Science and Information Organization]
卷期号:15 (6)
标识
DOI:10.14569/ijacsa.2024.0150678
摘要

Sentiment analysis is vital for understanding public opinion, but improving its performance is challenging due to the complexities of high-dimensional text data and diverse user-generated content. We propose a novel framework based on Dimensionality Reduction for Machine Learning (DRML) that enhances the classification performance by 21.55% while reducing the dimension of the feature matrix by 99.63%. Our research addresses the fundamental question of whether it is possible to reduce the feature space significantly while improving sentiment analysis performance. Our approach employs Principal Component Analysis (PCA) to effectively capture essential textual features and includes the development of an algorithm for identifying principal components from positive and negative reviews. We then create a supervised dataset by combining these components. Furthermore, we integrate a range of state-of-the-art machine learning algorithms (Decision Tree, K-Nearest Neighbours, Bernoulli Naïve Bayes, and Majority Voting Ensemble) into our framework, along with a custom tokenizer, to harness the full potential of reduced-dimensional data for sentiment classification. We have conducted extensive experiments using gold standard multi-domain benchmark datasets from Amazon to show that DRML outperforms other state-of-the-art approaches. Our proposed methodology gives superior performance with an average performance of 98.38% which is a significant increase in performance by 21.55% compared to the baseline methodology using Bag of Words (BoW). In terms of individual evaluation parameters, DRML shows an increase of 21.84% in Accuracy, 20.4% in Precision, 21.84% in Recall, and 22.11% in F1-score. In comparison with the state-of-the-art (SOTA) methodologies applied to the same benchmark dataset in recent years, our framework demonstrates a significant average increase in Accuracy for Sentiment Analysis by 10.96%. This substantial improvement underscores the effectiveness of our approach. To conclude, our research contributes to the field of sentiment analysis by introducing an innovative framework that not only improves the efficiency of sentiment analysis but also paves the way for the analysis of extensive textual data in diverse real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
5秒前
加油加油发布了新的文献求助10
5秒前
Nia发布了新的文献求助10
6秒前
cff发布了新的文献求助10
7秒前
LLL发布了新的文献求助30
7秒前
852应助Robin采纳,获得10
14秒前
今后应助devilito采纳,获得30
15秒前
16秒前
嘎嘎嘎嘎完成签到,获得积分10
16秒前
17秒前
cff完成签到,获得积分10
17秒前
21秒前
22秒前
24秒前
完美世界应助Robin采纳,获得10
25秒前
26秒前
XM发布了新的文献求助10
27秒前
彪壮的小玉完成签到,获得积分10
36秒前
科研通AI5应助dhua采纳,获得30
39秒前
甜甜圈完成签到,获得积分20
40秒前
bc应助ddh采纳,获得30
43秒前
44秒前
47秒前
kai发布了新的文献求助10
49秒前
devilito发布了新的文献求助30
51秒前
51秒前
364zdk完成签到 ,获得积分10
51秒前
Tink完成签到,获得积分10
53秒前
54秒前
新晋学术小生完成签到 ,获得积分10
54秒前
55秒前
56秒前
刘搞笑发布了新的文献求助10
56秒前
善学以致用应助oia采纳,获得10
57秒前
caimeng发布了新的文献求助10
58秒前
58秒前
小苗发布了新的文献求助10
59秒前
领导范儿应助纯真的笑容采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778761
求助须知:如何正确求助?哪些是违规求助? 3324341
关于积分的说明 10217907
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798544
科研通“疑难数据库(出版商)”最低求助积分说明 758415