Parallel Multi-Path Network for Ocular Disease Detection Inspired by Visual Cognition Mechanism

计算机科学 认知 机制(生物学) 路径(计算) 人工智能 疾病 计算机视觉 神经科学 医学 计算机网络 心理学 病理 哲学 认识论
作者
Tao Deng,Yi Huang,C F Yang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/jbhi.2024.3471807
摘要

Various ocular diseases such as cataracts, glaucoma, and diabetic retinopathy have become several major factors causing non-congenital visual impairment, which seriously threatens people's vision health. The shortage of ophthalmic medical resources has brought huge obstacles to large-scale ocular disease screening. Therefore, it is necessary to use computer-aided diagnosis (CAD) technology to achieve large-scale screening and diagnosis of ocular diseases. In this work, inspired by the human visual cognition mechanism, we propose a parallel multi-path network for multiple ocular diseases detection, called PMP-OD, which integrates the detection of multiple common ocular diseases, including cataracts, glaucoma, diabetic retinopathy, and pathological myopia. The bottom-up features of the fundus image are extracted by a common convolutional module, the Low-level Feature Extraction module, which simulates the non-selective pathway. Simultaneously, the top-down vessel and other lesion features are extracted by the High-level Feature Extraction module that simulates the selective pathway. The retinal vessel and lesion features can be regarded as task-driven high-level semantic information in the physician's disease diagnosis process. Then, the features are fused by a feature fusion module based on the attention mechanism. Finally, the disease classifier gives prediction results according to the integrated multi-features. The experimental results indicate that our PMP-OD model outperforms other state-of-the-art (SOTA) models on an ocular disease dataset reconstructed from ODIR-5K, APTOS-2019, ORIGA-light, and Kaggle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助zyw采纳,获得10
刚刚
可可不西锂完成签到 ,获得积分10
刚刚
HaroldNguyen完成签到,获得积分10
2秒前
奋斗的思烟完成签到 ,获得积分10
2秒前
冰魂应助舒适路人采纳,获得10
2秒前
额度无法发布了新的文献求助10
2秒前
科研通AI5应助炸疼采纳,获得10
4秒前
4秒前
5秒前
一木张完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
9秒前
Golden发布了新的文献求助10
9秒前
SYLH应助pphu采纳,获得10
10秒前
11秒前
Noel应助于芋菊采纳,获得50
12秒前
12秒前
在水一方应助脸小呆呆采纳,获得10
12秒前
lizhiqian2024发布了新的文献求助10
12秒前
肖恩完成签到,获得积分10
13秒前
13秒前
xzy998应助舒适路人采纳,获得10
14秒前
程11完成签到,获得积分10
15秒前
16秒前
17秒前
激昂的南烟完成签到 ,获得积分10
19秒前
sherryyijia发布了新的文献求助10
19秒前
20秒前
田様应助脸小呆呆采纳,获得10
21秒前
21秒前
zyw发布了新的文献求助10
21秒前
希望天下0贩的0应助EVE采纳,获得10
22秒前
23秒前
zgt01应助93采纳,获得10
24秒前
25秒前
苯环羟基发布了新的文献求助10
25秒前
额度无法完成签到,获得积分10
26秒前
科研通AI2S应助舒适路人采纳,获得10
26秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784418
求助须知:如何正确求助?哪些是违规求助? 3329484
关于积分的说明 10242453
捐赠科研通 3044982
什么是DOI,文献DOI怎么找? 1671481
邀请新用户注册赠送积分活动 800346
科研通“疑难数据库(出版商)”最低求助积分说明 759372