Optimized charging-station placement and UAV trajectory for enhanced uncertain target detection in intelligent UAV tracking systems

计算机科学 软件部署 弹道 实时计算 无人机 跟踪(教育) 运动规划 强化学习 路径(计算) 能量(信号处理) 人工智能 机器人 计算机网络 物理 天文 心理学 教育学 统计 数学 生物 遗传学 操作系统
作者
Haythem Bany Salameh,Ameerah Othman,Mohannad Alhafnawi
出处
期刊:International journal of cognitive computing in engineering [Elsevier BV]
卷期号:5: 367-378 被引量:3
标识
DOI:10.1016/j.ijcce.2024.08.004
摘要

Unmanned Aerial Vehicle (UAV) technology is proposed to improve social safety, provide specialized services, and improve overall well-being in crowded indoor spaces. The deployment of drones in indoor environments can improve emergency response time, offer various wireless services, allow efficient tracking, and improve awareness in crowded scenarios. In this paper, we propose a UAV-based tracking framework that relies on energy-limited UAVs that attempts to determine the appropriate placement of UAV charging stations (CHSs) and design a UAV path planning strategy to effectively carry out detection/tracking tasks of uncertain phenomena. The proposed framework comprises a CHS placement method and a UAV path planning algorithm. The CHS placement method attempts to find the optimal placement of a given number of available CHSs so that the energy consumed by a UAV to reach the nearest CHS is reduced. This, consequently, preserves the UAV's energy, reducing the time required to return to the CHS and the period of none-tracking during the return time to the CHS. This can extend the tracking mission time and enhance detection performance. Based on the obtained optimal CHS placement, we design a reinforcement learning (RL)–based UAV trajectory algorithm to effectively detect and track a target (event of interest) with unknown behavior. The proposed RL-based UAV trajectory algorithm leverages long-term spatio-temporal behavior knowledge of uncertain targets (i.e., observed and learned events) to improve detection accuracy. Improving the detection of uncertain targets leads to better decision-making, faster responses, and improved security, safety, and efficiency in applications such as surveillance, defense, and search and rescue. The simulation results demonstrate the superior detection accuracy achieved by the proposed framework. Compared to a reference RL-based approach, the proposed algorithm achieves up to 65% higher detection accuracy in symmetric monitored areas and 20% increased accuracy in asymmetric monitored areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
科研通AI5应助舒适路人采纳,获得10
3秒前
forever发布了新的文献求助10
3秒前
打打应助qwertyuiop采纳,获得10
4秒前
孙季沅发布了新的文献求助10
4秒前
悠嘻嘻发布了新的文献求助10
4秒前
跳跃的迎荷完成签到 ,获得积分10
7秒前
9秒前
咔嚓完成签到,获得积分10
9秒前
9秒前
12秒前
12秒前
Owen应助自由的雅青采纳,获得10
12秒前
顺然完成签到,获得积分10
12秒前
领导范儿应助121314wld采纳,获得10
13秒前
FashionBoy应助121314wld采纳,获得10
13秒前
CodeCraft应助121314wld采纳,获得10
13秒前
我是老大应助121314wld采纳,获得10
13秒前
orixero应助121314wld采纳,获得10
13秒前
NexusExplorer应助121314wld采纳,获得10
13秒前
赘婿应助121314wld采纳,获得10
13秒前
深情安青应助121314wld采纳,获得10
13秒前
Akim应助121314wld采纳,获得10
13秒前
Noel应助121314wld采纳,获得10
13秒前
领导范儿应助forever采纳,获得10
15秒前
鱼在哪儿发布了新的文献求助10
15秒前
15秒前
15秒前
奇奇云发布了新的文献求助30
16秒前
16秒前
硫化铅发布了新的文献求助30
18秒前
ChenxiDai完成签到,获得积分10
18秒前
赘婿应助江峰采纳,获得10
18秒前
CipherSage应助皮老师采纳,获得10
18秒前
19秒前
20秒前
知行合一完成签到,获得积分10
21秒前
寻梦发布了新的文献求助50
21秒前
krajicek完成签到,获得积分10
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784436
求助须知:如何正确求助?哪些是违规求助? 3329565
关于积分的说明 10242565
捐赠科研通 3044992
什么是DOI,文献DOI怎么找? 1671494
邀请新用户注册赠送积分活动 800371
科研通“疑难数据库(出版商)”最低求助积分说明 759391