A CT Radiomics Analysis of the Adrenal Masses: Can We Discriminate Lipid-poor Adenomas from the Pheochromocytoma and Malignant Masses?

医学 逻辑回归 放射科 恶性肿瘤 核医学 病理 内科学
作者
Bökebatur Ahmet Raşit Mendi,Mutlu Gülbay
出处
期刊:Current Medical Imaging Reviews [Bentham Science Publishers]
卷期号:19 (9) 被引量:4
标识
DOI:10.2174/1573405619666221115124352
摘要

Aims: The aim of the study is to demonstrate a non-invasive alternative method to aid the decision making process in the management of adrenal masses. Background: Lipid-poor adenomas constitute 30% of all adrenal adenomas. When discovered incidentally, additional dynamic adrenal examinations are required to differentiate them from an adrenal malignancy or pheochromocytoma. Objective: In this retrospective study, we aimed to discriminate lipid-poor adenomas from other lipidpoor adrenal masses by using radiomics analysis in single contrast phase CT scans. Materials and Methods: A total of 38 histologically proven lipid-poor adenomas (Group 1) and 38 cases of pheochromocytoma or malignant adrenal mass (Group 2) were included in this retrospective study. Lesions were segmented volumetrically by two independent authors, and a total of 63 sizes, shapes, and first- and second-order parameters were calculated. Among these parameters, a logit-fit model was produced by using 6 parameters selected by the LASSO (least absolute shrinkage and selection operator) regression. The model was cross-validated with LOOCV (leave-one-out crossvalidation) and 1000-bootstrap sampling. A random forest model was also generated in order to use all parameters without the risk of multicollinearity. This model was examined with the nested crossvalidation method. Results: Sensitivity, specificity, accuracy and AUC were calculated in test sets as 84.2%, 81.6%, 82.9% and 0.829 in the logit fit model and 91%, 80%, 82.8% and 0.975 in the RF model, respectively. Conclusion: Predictive models based on radiomics analysis using single-phase contrast-enhanced CT can help characterize adrenal lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莫x莫完成签到 ,获得积分10
2秒前
长情以蓝完成签到 ,获得积分10
11秒前
cd完成签到,获得积分10
11秒前
故意不上钩的鱼完成签到,获得积分0
12秒前
14秒前
wonderbgt完成签到,获得积分10
14秒前
123完成签到 ,获得积分10
20秒前
李振博完成签到 ,获得积分10
23秒前
河堤完成签到 ,获得积分10
23秒前
magictoo完成签到,获得积分10
24秒前
敏今03完成签到,获得积分10
25秒前
27秒前
伶俐的千凡完成签到,获得积分10
28秒前
manmanzhong完成签到 ,获得积分10
36秒前
王小凡完成签到 ,获得积分10
37秒前
Yiling完成签到,获得积分10
48秒前
CATDOM完成签到 ,获得积分10
50秒前
淡然觅荷完成签到 ,获得积分10
51秒前
闵不悔完成签到,获得积分10
53秒前
lsl完成签到,获得积分10
54秒前
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
1分钟前
Smar_zcl应助科研通管家采纳,获得200
1分钟前
鹰击长空关注了科研通微信公众号
1分钟前
娅娃儿完成签到 ,获得积分10
1分钟前
wlscj应助小杨采纳,获得50
1分钟前
Slava完成签到 ,获得积分10
1分钟前
1分钟前
王旭完成签到,获得积分10
1分钟前
鹰击长空发布了新的文献求助10
1分钟前
billkin完成签到,获得积分10
1分钟前
单薄乐珍完成签到 ,获得积分0
1分钟前
她的城完成签到,获得积分0
1分钟前
Ye完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5293860
求助须知:如何正确求助?哪些是违规求助? 4443921
关于积分的说明 13831743
捐赠科研通 4327836
什么是DOI,文献DOI怎么找? 2375755
邀请新用户注册赠送积分活动 1371023
关于科研通互助平台的介绍 1336043